• Title/Summary/Keyword: 잔향음 준위

Search Result 12, Processing Time 0.014 seconds

Experimental analysis and modeling for predicting bistatic reverberation in the presence of artificial bubbles (인공기포 존재 환경에서의 양상태 잔향음 예측을 위한 해상 실험 분석 및 모델링 연구)

  • Yang, Wonjun;Oh, Raegeun;Bae, Ho Seuk;Son, Su-Uk;Kim, Da Sol;Choi, Jee Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.4
    • /
    • pp.426-434
    • /
    • 2022
  • Bubbles generated by various causes in the ocean are known to persist for long periods of time. Although the volume occupied by bubbles in the ocean is small, the presence of bubbles in ocean due to resonance and attenuation greatly affects the acoustic properties. Accordingly, bistatic reverberation experiment was performed in the ocean where artificial bubbles exist. A number of transducers and receivers were installed on 6 buoys arranged in a hexagonal shape, and blowing agents were dropped in the center of the buoy to generate bubbles. For reverberation modeling that reflects acoustic characteristics changed by bubbles, the spatial distribution of bubbles was estimated using video data and received signals. A measurement-based bubble spectral shape was used, and it was assumed that the bubble density within the spatial distribution of the estimated bubble was the same. As a result, it was confirmed that the bubble reverberation was simulated in a time similar to the measured data regardless of the bubble density, and the bubble reverberation level similar to the measured data was simulated at a void fraction of about 10-7 ~ 10-6.8.

Effects of Wind-Generated Bubbles on Sound Propagation (음파전달에 미치는 풍성기포의 영향)

  • Lee, Won-Byoung;Kim, Young-Shin;Joo, Jong-Min;Lee, Chang-Won;Na, Jung-Yul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.8
    • /
    • pp.395-402
    • /
    • 2006
  • When an active SONAR works in the subsurface. its detection Performance is limited by the reverberation. The winds Play a primary role in the Production of bubbles in the ocean. And the bubbles as efficient scatters contribute to the reverberant field. In this Paper the effects of wind-generated bubbles on sound propagation in the subsurface are investigated as a mid-frequency Hull-mounted SONAR works. The active signal excess is calculated at source depths 3. 5. and 10m considering bubble layer for frequencies 5. 7.5, and 10kHz. The change of the near-surface sound speed tend to increase surface reverberation levels and change the active signal excess. In the 10m/s winds. the maximum detection range reduces over 3km through the near-surface . The reason is the upper refraction due to the wind-generated bubbles.