• Title/Summary/Keyword: 잔향수조도

Search Result 9, Processing Time 0.024 seconds

Experimental Study on Source Level Estimation Techniques of Underwater Sound Source in Reverberant Water Tank (잔향수조 내 수중음원의 음원레벨 추정기법에 관한 실험연구)

  • Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.358-363
    • /
    • 2019
  • The acoustic power is used as a primary index characterizing underwater sound sources and could be defined by its source level. The source level has been assessed using various experimental techniques such as the reverberation time method and reverberant tank plot method. While the reverberation time method requires reverberation time data extracted in a preliminary experiment in a reverberant water tank, the reverberant tank plot method only needs acoustic pressure data directly obtained at the reverberation water tank. In this research, these experimental techniques were studied in comparative experiments to estimate the source levels of underwater sources in a reverberant water tank. This paper summarizes the basic theories and procedures of these experimental techniques and presents the experimental results for an underwater source in a long cuboid water tank using each technique, along with a discussion.

Acoustic Field Analysis of Reverberant Water Tank using Acoustic Radiosity Method and Experimental Verification (음향라디오시티법을 이용한 잔향수조 음장 해석과 실험검증)

  • Kim, Kookhyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.5
    • /
    • pp.464-471
    • /
    • 2019
  • The acoustic power is a major acoustical characteristic of an underwater vehicle and could be measured in a reverberant water tank. In order to obtain accurate measurement results, the acoustic field formed by the sound source should be investigated quantitatively in the reverberant water tank. In this research, the acoustic field of a reverberant water tank containing an underwater sound source has been analyzed by using an acoustic radiosity method one of the numerical analysis methods suitable for the acoustic analysis of the highly diffused space. The source level of the underwater sound source and acoustical properties of the water tank input to the numerical analysis have been estimated by applying the reverberant tank plot method through a preliminary experiment result. The comparison of the numerical analysis result with that of the experiment has verified the accuracy of the acoustic radiosity method.

Underwater acoustic communication performance in reverberant water tank (잔향음 우세 수조 환경에서의 수중음향 통신성능 분석)

  • Choi, Kang-Hoon;Hwang, In-Seong;Lee, Sangkug;Choi, Jee Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.184-191
    • /
    • 2022
  • Underwater acoustic wave in shallow water is propagated through multipath that has a large delay spread causing Inter-Symbol Interference (ISI) and these characteristics deteriorate the performance in the communication system. In order to analyze the communication performance and investigate the correlation with multipath delay spread in a reverberant environment, an underwater acoustic communication experiment using Binary Phase-Shift Keying (BPSK) signals with symbol rates from 100 sym/s to 8000 sym/s was conducted in a 5 × 5 × 5 m3 water tank. The acoustic channels in a well-controlled tank environment had the characteristics of dense multipath delay spread due to multiple reflections from the interfaces and walls within the tank and showed the maximum excess delay of 40 ms or less, and the Root Mean Squared (RMS) delay spread of 8 ms or less. In this paper, the performances of Bit Error Rate (BER) and output Signal-to-Noise Ratio (SNR) were analyzed using four types of communication demodulation techniques. And the parameter, Symbol interval to Delay spread Ratio in reverberant environment (SDRrev), which is the ratio of symbol interval to RMS delay spread in the reverberant environment is defined. Finally, the SDRrev was compared to the BER and the output SNR. The results present the reference symbol rate in which high communication performance can be guaranteed.

Numerical and Experimental Investigation on Structure-acoustic Coupling Effect in a Reverberant Water Tank (잔향수조의 구조-음향 연성효과에 관한 수치 및 실험적 고찰)

  • Park, Yong;Kim, Kookhyun;Cho, Dae-Seung;Lee, Jong-Ju
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.1
    • /
    • pp.94-101
    • /
    • 2019
  • Underwater acoustic power should be measured in a free field, but it is not easy to implement. In practice, the measurement could be performed in a reverberant field such as a water-filled steel tank and concrete tank. In this case, the structure and the acoustic field are strongly or weakly coupled according to material properties of the steel and water. So, characteristics of the water tank must be investigated in order to get the accurate underwater acoustic power. In detail, modal frequencies, mode shapes of the structure and frequency response functions of the acoustic field could represent the characteristics of the reverberant water tank. In this paper, the structure-acoustic coupling has been investigated on a reverberant water tank numerically and experimentally. The finite element analysis has been carried out to estimate the structural and acoustical modal parameters under the dry and water-filled conditions, respectively. In order to investigate the structure-acoustic coupling effect, the numerical analysis has been performed according to the structure stiffness change of the water tank. The acoustic frequency response functions were compared with the numerical analysis and acoustic exciting test. From the results, the structural modal frequencies of the water-filled condition have been decreased compared to those of the dry condition in the low frequency range. The acoustic frequency response functions under the coupled boundary conditions showed different patterns from those under the ideal boundary conditions such as the pressure release and rigid boundary condition, respectively.

Simple Estimation of Sound Source Directivity in Diffused Acoustic Field: Numerical Simulation (확산음향장에서의 음원 지향성 간이추정: 수치시뮬레이션)

  • Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.421-426
    • /
    • 2019
  • The directivity of an underwater sound source should be measured in an acoustically open field such as a calm sea or lake, or an anechoic water tank facility. However, technical difficulties arise when practically implementing this in open fields. Signal processing-based techniques such as a sound intensity method and near-field acoustic holography have been adopted to overcome the problem, but these are inefficient in terms of acquisition and maintenance costs. This study established a simple directivity estimation technique with data acquisition, filtering, and analysis tools. A numerical simulation based on an acoustic radiosity method showed that the technique is practicable for sound source directivity estimation in a diffused reverberant acoustic field like a reverberant water tank.

A Study on the Experimental Trend Analysis of Underwater Noise Factors in Compressed Water System of the Linear Pump Type (선형펌프방식 압축수 시스템의 실험적 수중소음인자별 경향분석 연구)

  • Yi, Jong-ju;Ahn, Kang-su;Sur, Jong-mu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.228-236
    • /
    • 2021
  • In order to understand the underwater noise source factor of the linear pump type forced ejection system, a reduced-model compressed water experiment device was developed. The reduced-model compressed water experiment device consists of a reverberation tank, a linear pump type forced ejection device, and an underwater vehicle. The underwater noise source was selected from the hydraulic ram moving speed, the hydraulic ram/piston pipe spacing, the ejection pipe inlet/water ram area ratio, and the number of water ram inlets. The underwater vehicle was ejected into the reverberation tank by the device. The source level was derived from the measured sound pressure. The source level tends to increase as the hydraulic ram/piston tube spacing and the hydraulic ram moving speed increase. The source level tended to increase as the area ratio was increased, but the level was weak. The number of water ram inlet did not affect the source level.

Measurement of Acoustic Radiation Efficiency of the Submerged Circular Cylindrical Structure in Water Tank (수조에서의 원통형 구조물 음향방사효율 측정에 관한 연구)

  • Han, Seungjin;Kang, Myunghwan;Lee, Jongju
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.11
    • /
    • pp.747-752
    • /
    • 2015
  • Underwater radiated noise is an important characteristic in the naval weapon systems. It is difficult to measure the radiation efficiency of underwater vehicle, such as UUV(unmanned underwater vehicle) and underwater weapons in real operation environment. In this study, acoustic radiation efficiency of a circular cylindrical structure is measured in the laboratory-water tank. The radiation efficiency is compared with the numerical results and it is found that they are in a good agreement. Therefore, the measurement method can be applied effectively for predicting the underwater radiation noise and effectiveness of radiation reduction means.

Experimental Validation on Underwater Sound Speed Measurement Method Using Cross-Correlation of Time-Domain Acoustic Signals in a Reverberant Water Tank (잔향 수조에서의 시간 이력 수음 신호 간 교차상관을 이용한 수중 음속 계측 방법에 관한 실험적 검증)

  • Joo-Yeob Lee;Kookhyun Kim;Sung-Ju Park;Dae-Seung Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • Underwater sound speed is an important analysis parameter on an estimation of the underwater radiated noise (URN) emitted from vessels. This paper aims to present an underwater sound speed measurement procedure using a cross-correlation of time-domain acoustic signals and validate the procedure through an experiment in a reverberant water tank. For the purpose, time-domain acoustic signals transmitted by a Gaussian pulse excitation from an acoustic projector have been measured at 20 hydrophone positions in the reverberant water tank. Then, the sound speed in water has been calculated by a linear regression using 190 cross-correlation cases of distances and time lags between the received signals and the result has been compared with those estimated by the existing empirical formulae. From the result, it is regarded that the presented experimental procedure to measure an underwater sound speed is reliably applicable if the time resolution is sufficiently high in the measurement.

A Study on the OFDM System with Clipping Method for Underwater Communication (수중통신에서 클리핑 기법을 적용한 OFDM 시스템 연구)

  • Han, Jeong-Woo;Kim, Se-Young;Kim, Ki-Man;Jung, Ji-Won;Kim, Seung-Joo;Chun, Seung-Yong;Son, Kwon;Dho, Kyoung-Cheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.5
    • /
    • pp.432-440
    • /
    • 2009
  • Recently, the necessity of underwater acoustic communication and demand for transmitting and receiving various data such as voice or high resolution image data are increasing as well. The performance of underwater acoustic communication system is influenced by underwater channel characteristic. Especially, a delay spread caused by reverberation and multi-path induces the ISI (Inter-Symbol-Interference) and reduces the communication performance. In this paper, we study the OFDM (Orthogonal Frequency Division Multiplexing) technique for robust the delay spread in underwater channel. We also use the clipping method to overcome the performance degradation in high PAPR (Peak-to-Average Power Ratio). We confirm the performances of underwater communication system by the underwater channel model simulation model and experiment in small water tank. As a result, the multi-carrier modulation with clipping method presented low BER and the previous single carrier modulation had high BER.