• Title/Summary/Keyword: 잔여수명평가

Search Result 70, Processing Time 0.022 seconds

Assessment of Residual Life for In-Service Fossil Power Plant Components Using Grain Boundary Etching Method (입계부식법에 의한 사용중인 화력발전소 요소의 잔여수명평가)

  • Han, Sang-In;Yoon, Kee-Bong;Chung, Se-Hi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.22-31
    • /
    • 1997
  • The grain boundary etching method as a method for assessing degradation of structural materials has received much attention because it is simple, inexpensive and easy to apply to real components. In this study, the effectiveness of the method is verified by successfully applying the technique to in-service components of aged fossil power plants such as main steam pipes, boiler headers an turbine rotors. A new degradation parameter, intersecting number ratio (N$_{1}$/N$_{0}$), is employed. The intersecting number ratio (N$_{1}$/N$_{0}$) is defined as the ratio of intersection number (N$_{1}$) obtained from 5-minute picric acid etched surface to the number (N$_{0}$) obtained from nital etched surface. Two kinds of test materials, 2.25Cr-1Mo steel and 1Cr-1Mo-0.25V steel, were artificially thermal-aged at 630.deg. C in different levels of degradation., (N$_{1}$/N$_{0}$) were measured. And, correlations between the measured values and LMP values calculated from aging temperature and aging time were sought. To check the validity of the correlations obtained in laboratory, similar data were measured from service components in four old Korean fossil power plants. These on-site measurement data were in good correlation with those obtained in the laboratory.oratory.

The consideration of the Partial Discharge Diagnosis System in Chungju Hydro (충주 수력 부분방전 진단 시스템 신뢰성 고찰)

  • Ok, Yeon-Ho;Lim, Jae-Il;Park, Ji-Kun;Kwak, Won-Ku;Lee, Jae-Heung;Choi, Hyeong-Cheol;Lee, Nam-Hyung;Shin, Byoung-Chol
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2013_2014
    • /
    • 2009
  • 진단기술은 기기의 열화 현상 및 이상 현상으로 진전되는 특성을 측정하여 향후 발생이 예상되는 이상을 조기에 발견하는 것을 목적으로 한다. 기기를 정밀 진단, 분석하여 잔여 수명을 평가하고 적절한 대체계획을 수립함으로써 신뢰도 향상 및 경제적인 설비 운용이 가능하다. 본 논문에서는 수력 발전기 운전 중 부분방전 진단 시스템을 이용하여 수력 발전기의 운전 중에 발생하는 부분방전 신호를 실시간으로 측정, 분석하고 수력 발전기 권선의 절연 상태를 감시 진단하여 기기의 열화 및 이상 현상등을 조기에 발견하고 발전설비의 신뢰도를 향상시킬 수 있는 방안을 제시하고자 한다.

  • PDF

Assessment of Material Risk and Residual Life of CrMoV Turbine Rotor Considering High Temperature Material Degradation (고온 재질 열화도를 반영한 CrMoV 터빈로터의 재료 위험도 및 잔여수명 평가)

  • Ma, Young-Wha;Lee, Jin-Sang;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.33-41
    • /
    • 2006
  • Material degradation should be considered to assess integrity and residual life of high temperature equipments. However, the property data reflecting degradation are not sufficient for practical use. In this study measuring properties for 1Cr-1Mo-0.25V forging steel generally used for turbine rotor was carried out. Degradation was simulated by isothermal ageing. heat treatment and variation of microstructure was observed. Mechanical properties such as tensile strength, impact energy, hardness and fracture toughness were measured. Assuming a semi-elliptical surface crack at the bore hole in a turbine rotor, material risk was estimated by using the aged material property data obtained in this study. Safety margin was decreased and life of the rotor was exhausted. This procedure can be used in assessing the residual life of a turbine rotor due to material degradation.

Development of the High Voltage EIS Instrument for the Evaluation of the Residual Useful Life of the Batteries (배터리의 잔여 수명 평가를 위한 고압 임피던스 분광장치의 개발.)

  • Farooq, Farhan;khan, Asad;Lee, Seung June;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.216-217
    • /
    • 2019
  • The battery powered electric vehicle (EV) is one of most promising technologies in 21st century. Though the lithium batteries are playing an important role in the EVs, they are only applicable until their capacities reach 80%, the end of its useful first life. Yet, these batteries can live a second life such as Energy Storage Systems (ESS). In order to utilize the Residual Useful Life (RUL) of the batteries the State of Health (SOH) of them needs to be estimated by a nondestructive test such as Electrochemical Impedance Spectroscopy (EIS) technique. Though many kinds of different EIS instruments are commercially available, most of them can only test a battery module less than 10V and the price of the instrument is very high. In this paper a low-cost EIS instrument suitable for measuring the impedance spectrum of the high voltage battery module is proposed and its validity is verified through the experiments. In order to prove the accuracy of the developed EIS instrument its measured impedance spectrum is compared with the results obtained by a commercial instrument. The Chi Square value calculated between two impedance spectrum measured by both developed and commercial instruments are less than 2%, which prove the strong correlation between two results.

  • PDF

Assessment of Fatigue Damage of Adhesively Bonded Composite -Metal Joints by Acousto-Ultrasonics and Acoustic Emission (음향초음파와 음향방출에 의한 복합재료-금속 접착접합부의 피로손상 평가)

  • Kwon, Oh-Yang;Lee, Kyung-Joo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.425-433
    • /
    • 2001
  • A correlation between fatigue damage and acousto-ultrasonic (AU) parameters has been obtained from signals acquired during fatigue loading of the single-lap joints of a carbon-fiber reinforced plastic (CFRP) laminates and A16061 plate. The correlation showed an analogy to those representing the stiffness reduction $(E/E_0)$ of polymer matrix composites by the accumulation of fatigue damage. This has been attributed to the transmission characteristics of acoustic wave energy through bonded joints with delamination-type defects and their influence on the change of spectral content of AU signals. Another correlation between fatigue cycles and the spectral magnitude of acoustic emission (AE) signals has also been found during the final stage of fatigue loading. Both AU and AE can be applied almost in real-time to monitor the evolution of damage during fatigue loading.

  • PDF

Delamination Evaluation of Thermal Barrier Coating on Turbine Blade owing to Isothermal Degradation Using Ultrasonic C-scan Image (초음파 C-scan을 이용한 터빈 블레이드 열차폐코팅의 등온열화에 의한 박리 평가 기법)

  • Lee, Ho-Girl;Kim, Hak-Joon;Song, Sung-Jin;Seok, Chang-Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.353-362
    • /
    • 2016
  • Thermal barrier coating (TBC) is an essential element consisting of a super-alloy base and ceramic coating designed to achieve long operational time under a high temperature and pressure environment. However, the top coat of TBC can be delaminated at certain temperatures with long operation time. As the delamination of TBC is directly related to the blade damage, the coupling status of the TBC should be assured for reliable operation. Conventional studies of nondestructive evaluation have been made for detecting generation of thermally grown oxide (TGO) or qualitatively evaluating delamination in TBC. In this study, the ultrasonic C-scan method was developed to obtain the damage map inside TBC by estimating the delamination in a quantitative way. All specimens were isothermally degraded at $1,100^{\circ}C$ with different time, having different partial delamination area. To detect partial delamination in TBC, the C-scan was performed by a single transducer using pulse-echo method with normal incidence. Partial delamination coefficients of 1 mm to 6 mm were derived by the proportion of the surface reflection signal and flaw signal which were theoretical signals using Rogers-Van Buren and Kim's equations. Using the partial delamination coefficients, the partial delamination maps were obtained. Regardless of the partial delamination coefficient, partial delamination area was increased when degradation time was increased in TBC. In addition, a decrease in partial delamination area in each TBC specimen was observed when the partial delamination coefficient was increased. From the portion of the partial delamination maps, the criterion for delamination was derived.

A Study on Managing of Metal Loss by Flow-Accelerated Corrosion in the Secondary Piping of CANDU Nuclear Plants (CANDU형 원전 2차 배관의 침부식 감육 관리방법에 관한 연구)

  • 심상훈;송정수;윤기봉;황경모;진태은;이성호
    • Journal of Energy Engineering
    • /
    • v.11 no.1
    • /
    • pp.18-25
    • /
    • 2002
  • One of the most serious concern in nuclear power plant piping maintenance is thickness reduction due to flow-accelerated corrosion (FAC). Since the FAC occurs under specific conditions of pH, dissolved oxygen, temperature, flow velocity, steam quality of the fluid and materials and geometry of the piping, a systematic approach is required for managing the FAC problem. In this study, construction of a secondary piping database, analyzing the FAC rate using the database and predicting the residual life was performed for a domestic CANDU nuclear power plant. Also FAC mechanism and factors affecting FAC were reviewed. By showing a case study on analysis for a pipe line between a separator and a flash tank, a procedure for managing FAC problem is suggested. The procedure proposed in this paper can be widely applied to the secondary piping of other domestic nuclear polder plants.

Design and Evaluation of a Fuzzy Logic based Multi-hop Broadcast Algorithm for IoT Applications (IoT 응용을 위한 퍼지 논리 기반 멀티홉 방송 알고리즘의 설계 및 평가)

  • Bae, Ihn-han;Kim, Chil-hwa;Noh, Heung-tae
    • Journal of Internet Computing and Services
    • /
    • v.17 no.6
    • /
    • pp.17-23
    • /
    • 2016
  • In the future network such as Internet of Things (IoT), the number of computing devices are expected to grow exponentially, and each of the things communicates with the others and acquires information by itself. Due to the growing interest in IoT applications, the broadcasting in Opportunistic ad-hoc networks such as Machine-to-Machine (M2M) is very important transmission strategy which allows fast data dissemination. In distributed networks for IoT, the energy efficiency of the nodes is a key factor in the network performance. In this paper, we propose a fuzzy logic based probabilistic multi-hop broadcast (FPMCAST) algorithm which statistically disseminates data accordingly to the remaining energy rate, the replication density rate of sending node, and the distance rate between sending and receiving nodes. In proposed FPMCAST, the inference engine is based the fuzzy rule base which is consists of 27 if-then rules. It maps input and output parameters to membership functions of input and output. The output of fuzzy system defines the fuzzy sets for rebroadcasting probability, and defuzzification is used to extract a numeric result from the fuzzy set. Here Center of Gravity (COG) method is used to defuzzify the fuzzy set. Then, the performance of FPMCAST is evaluated through a simulation study. From the simulation, we demonstrate that the proposed FPMCAST algorithm significantly outperforms flooding and gossiping algorithms. Specially, the FPMCAST algorithm has longer network lifetime because the residual energy of each node consumes evenly.

A Prediction Method of the Gas Pipeline Failure Using In-line Inspection and Corrosion Defect Clustering (In-line Inspection과 부식결함 클러스터링을 이용한 가스배관의 고장예측)

  • Kim, Seong-Jun;Choe, Byung Hak;Kim, Woosik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.651-656
    • /
    • 2014
  • Corrosion has a significant influence upon the reliability assessment and the maintenance planning of gas pipeline. Corrosion defects occurred on the underground pipeline can be obtained by conducting periodic in-line inspection (ILI). However, little study has been done for practical use of ILI data. This paper deals with remaining lifetime prediction of the gas pipeline in the presence of corrosion defects. Because a pipeline parameter includes uncertainty in its operation, a probabilistic approach is adopted in this paper. A pipeline fails when its operating pressure is larger than the pipe failure pressure. In order to estimate the failure probability, this paper uses First Order Reliability Method (FORM) which is popular in the field of structural engineering. A well-known Battelle code is chosen as the computational model for the pipe failure pressure. This paper develops a Matlab GUI for illustrating failure probability predictions Our result indicates that clustering of corrosion defects is helpful for improving a prediction accuracy and preventing an unnecessary maintenance.

Midterm Results of Bipolar Hemiarthroplasty for Unstable Intertrochanteric Femoral Fractures Using a Type 3C Cementless Stem (불안정성 대퇴골 전자간 골절에 3C형 무시멘트 대퇴 스템을 이용한 고관절 반치환술의 중기 결과)

  • Chung, Woochull;Cho, Hong Man;Kim, Sun do;Park, Jiyeon;Kwon, Kihyun;Lee, Young
    • Journal of the Korean Orthopaedic Association
    • /
    • v.55 no.6
    • /
    • pp.503-510
    • /
    • 2020
  • Purpose: Bipolar hemiarthroplasty is used as an alternative to open reduction and internal fixation for unstable intertrochanteric fractures in elderly patients. Recent advances in medical systems and technologies have resulted in increased survival rates after intertrochanteric fractures of the femur, requiring selection of the appropriate femoral stems considering the mid- to long-term duration of survival. Hemiarthroplasty was performed for unstable intertrochanteric fractures using a double tapered quadrilateral femoral stem (C2 stem), and the clinical and radiological results were evaluated as a five-year follow-up post-surgery. Materials and Methods: From January 2004 to December 2013, 43 patients (43 hips) who underwent hemiarthroplasty with a C2 stem were enrolled in this study. Their mean age was 78.6 years (range, 70-84 years), and the mean follow-up period was 85.4 months (range, 60-96 months). During the follow-up period, clinical parameters, such as the changes in pain, walking ability, and functional status, were examined. Radiologically, changes in the proximal femur, such as osteoporosis and bone resorption of cortical bone, were noted. Complications that occurred during the follow-up period, such as dislocation and prosthetic features, were also reviewed. Results: Initially, the pain was relieved postoperatively, but it increased four years after surgery. The walking ability was reduced by two steps in nine patients after 60 months, and the Harris hip score was reduced significantly postoperatively after two to three years. Radiologically, cortical osteoporosis occurred in 14 patients. Five patients developed cortical bone resorption. Four of them showed nonunion of the trochanteric fracture fragments, and three of them suffered reverse oblique fractures. Conclusion: Careful selection considering the general health condition and remaining lifespan of the patient would be necessary for primary hip hemiarthroplasty using a 3C type cementless femoral stem for unstable intertrochanteric fractures in elderly patients with osteoporosis.