• Title/Summary/Keyword: 잔류 강도

Search Result 830, Processing Time 0.035 seconds

A study on fatigue properties of plasma carburized low carbon Cr-Mo steel (플라즈마 침탄한 저탄소 Cr-Mo강의 피로특성에 관한 연구)

  • Park, Kyeong-Bong;Sin, Dong-Myung;Lee, Chang-Youl;Lee, Ktung-Sub
    • Korean Journal of Materials Research
    • /
    • v.10 no.7
    • /
    • pp.505-514
    • /
    • 2000
  • The carburizing behavior and fatigue properties of the plasma carburized low carbon Cr-Mo steel(0.176C-1.014Cr-0.387Mo) have been investigated. The effective case depth in plasma carburized steel increased up to 50% in comparison with that of gas carburizing, and this case depth increased with the increasing surface carbon content. With increasing time in plasma carburizing, the surface carbon content increased but its increasing rate decreased. Fatigue properties were studied in terms of microstructure, case depth, retained austenite and residual stress near the surface. The fatigue limit of the plasma carburized steel was higher than that of gas carburized one. The initiation of microcracks and initial crack propagation were retarded due to a relatively little surface and internal oxidation layer in plasma carburized steel. Fractography showed the crack initiated at the surface, and transgranular fracture at surface layer was more predominant in plasma carburized steel compared to that of gas carburized steel.

  • PDF

Analysis on Flexural Behavior of Spiral Steel Pipe Considering Residual Stress Developed by Pipe Manufacturing (조관에 의한 잔류 응력을 고려한 스파이럴 강관의 휨 거동 분석)

  • Kim, Kyuwon;Kim, Jeongsoo;Kang, Dongyoon;Kim, Moon Kyum
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.4
    • /
    • pp.65-73
    • /
    • 2019
  • A spiral steel pipe has been more used widely as a structural member as well as transport pipeline because the pipe can be manufactured continuously, consequently more economical than the conventional UOE pipe. As improved pipe manufacture technology makes spiral pipes to have high strength and to have larger diameters, the spiral pipes have been recently used as long distance transport pipeline with a large diameter and strain-based design is thus required to keep structural integrity and cost effectiveness of the spiral pipe. However, design codes of spiral pipe have not been completely established yet, and structural behaviors of a spiral pipe are not clearly understood for strain-based design. In this paper, the effects of residual stresses due to the spiral pipe manufacture process are investigated on the flexural behavior of the spiral pipe. Finite element analyses were conducted to estimate residual stresses due to the manufacturing process for the pipes which have different forming angle, thickness, and strength, respectively. After that, the results were used as initial conditions for flexural analysis of the pipe to numerically investigate its flexural behaviors.

A Study on the Fatigue Strength of the Reinforced Concrete Beams Repaired with Glass Fiber Reinforced Polymer(GFRP) Bar and Glass Fiber Steel Plate(GSP) (GFRP Bar 및 GSP로 보수된 철근 콘크리트 보의 피로강도 연구)

  • Kim, Jae-Young;Kim, Chung-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.2
    • /
    • pp.191-195
    • /
    • 2009
  • After developing the pre-crack to simulate a damaged reinforced concrete beam, fatigue test was conducted on the beam repaired by GFRP Bar and GSP embedded method. In the result of fatigue test, most residual displacement and crack of the experimental beams occurs in the early loading cycle and an increasing rate of these due to number of cycles were insignificant. Comparing with a non-repaired beam, a static strength of the repaired beam greatly increased, but fatigue strength decreased. In S-N curves, fatigue strength of the beam repaired by GFRP Bar and GSP was 58%, 52% of the static strength respectively.

ACL Reconstruction with Remnant Preserving Technique - Technical Note - (잔류조직 보존 술기를 이용한 전방 십자 인대 재건술 - 수술 술기 -)

  • Cho, Sung-Do;Youm, Yoon-Seok;Jeong, Ji-Young;Jeon, Hyung-Min
    • Journal of the Korean Arthroscopy Society
    • /
    • v.13 no.1
    • /
    • pp.82-85
    • /
    • 2009
  • Purpose: In anterior cruciate ligament (ACL) reconstruction, preservation of the remnant original tissue might promote graft healing and be helpful in proprioception. But this procedure is difficult and causes the notch impingement. So we introduce a surgical technique that makes a transtibial femoral tunnel at 10 or 2 o'clock position with preservation of remnant tissue. Surgical approach: We tried to preserve the remnant tissue and synovium as much as possible, especially those of tibial attachment and extending to the posterior cruciate ligament (PCL), so as to have some tension and to prevent notch impingement. We set the tibial drill guide at 40~45 degrees and the intra-articular guide tip was 1 mm anterior and medial to the conventional site. The starting point of tibial guide pin was proximal to the pes anserinus and anterior to the medial collateral ligament. When the reamer approached the cortical bone of the tibial articular surface, the reamer must be advanced very carefully to minimize injury to the remnant tissue. The tibial and femoral tunnel at 10 or 2 o'clock position were made with the reamer, the diameter of which was same with that of the graft. Conclusion: We report a remnant preserving technique in ACL reconstruction that makes a transtibial femoral tunnel at 10 or 2 o'clock position

  • PDF

Effects of Residual Magnetization on MEL Non-destructive Inspection of Gas Pipeline (가스관의 자속누설탐사에서 잔류자화의 영향에 관한 연구)

  • Jang, Pyung-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.4
    • /
    • pp.143-148
    • /
    • 2004
  • Effects of residual flux density M$_{res}$ and number of inspection on the detection voltage and flux density B of the gas pipeline were investigated in MFL inspection, which is widely used for the non-destructive inspection in a gas pipeline. A simulation equipment composed of the magnetizer and iron ring attached on an aluminum disc was constructed instead of a huge gas pipeline facility. With this system. the iron ring could be perfectly demagnetized and signals from the bolt screw stuck on the disc could be clearly detected so that the effects of M$_{res}$S and the inspection number on the detection voltage and B of iron ring were effectively investigated. With increasing the number of inspection, M$_{res}$, B of the iron ring and the detection voltage decreased and then kept at constant values while final M$_{res}$ increased with increasing initial M$_{res}$. If inspection condition were kept unchanged, the detection voltage was proportional to the last M$_{res}$ of the iron ring instead of B. This was probably due to magnetic hysteresis of the iron ring inherited from magnetic domain so that consideration on the magnetic hysteresis was inevitable in the analysis of MFL signal from defects of a gas pipeline. A new inspection scheme using the magnetizer with reversed magnetization in the subsequent inspection was proposed from the result that a high detection voltage could be obtained in the first inspection of gas pipeline with positive M$_{res}$.

A Study on the Interfacial Bonding in AlN Ceramics/Metals Joints: I. Residual Stress Analysis of AlN/Cu and AlN/W Joints Produced by Active-Metal Brazing (AlN 세라믹스와 금속간 계면접합에 관한 연구 : I. AlN/Cu 및 AlN/W 활성금속브레이징 접합체의 잔류응력 해석)

  • Park, Sung-Gye;Lee, Seung-Hae;Kim, Ji-Soon;You, Hee;Yum, Young-Jin
    • Korean Journal of Materials Research
    • /
    • v.9 no.10
    • /
    • pp.962-969
    • /
    • 1999
  • Elastic and elasto-plastic stress analyses of AlN/Cu and AlN/W pints produced by active-metal brazing method using Ag-Cu-Ti insert-metal were performed with use of Finite-Element-Method(FEM). The results of stress analyses were compared with those from the pint strength tests and the observations of fracture behaviors. It was shown that a remarkably larger maximum principal stress is built in the AlN/Cu pint compared to the A1N/ W joint. Especially, the stress concentration with tensile component was confirmed at the free surface close to the bonded interface of AlN/Cu. The elasto-plastic analysis under consideration of stress relaxation effect of Ag-Cu-Ti insert possessing a so-called 'soft-metal effect' showed that the insert leads to a lowering of maximum principal stress in AlNiCu pint, even though an increase of the insert thickness above 100$\mu\textrm{m}$ could not bring its further decrease. The maximum pint strengths measured by shear test were 52 and 108 MPa for AlNiCu and AlN/W pints. respectively. Typical fractures of AlN/Cu pints occurred in a form of 'dome' which initiated from the free surface of AlN close to the bonded interface and proceeded towards the AlN inside forming a large angle. AlN/W pints were usually fractured at AlN side along the interface of AlN/insert-metal.

  • PDF

Extraction of pesticide residues in medical herbs by microwave (Microwave를 이용한 한약재 중의 잔류농약 추출)

  • Kim, Taek-Kyum;Kim, Tang-Eok
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.3
    • /
    • pp.60-67
    • /
    • 2000
  • This study was conducted to elucidate extraction efficiency by microwave in comparison with Soxhlet for extraction of pesticide residues in dried medical herbs; red-ginseng, white-ginseng, Bupleuri Radix, Angelica gigas Nakai, Rehmannia glutinosa. The acetone extraction by microwave of tolclofos-methyl and quintozene in medical herbs was efficient. The extraction efficiency by microwave with power 45 to 150 watts, extraction time 1 to 5 minutes and solvent volume 30 ml was compared with that of Soxhlet with extraction time 7 hours and solvent volume 150 ml. The extraction efficiency by microwave with extraction time 3 to 5 minutes was similar with extraction time of 7 hours by Soxhlet. When medical herbs spiked with tolclofos-methyl and quintozene was analyzed to how the extraction efficiency of microwave by kind of medical herbs, the extraction efficiency by microwave with extraction time of 3 to 5 minutes was the same as Soxhlet extraction. The optimal condition for extraction of tolclofos-methyl and quintozene in medical herbs by microwave was 45 to 90 watts of power supply, 3 to 5 minutes of extraction time and acetone 30 ml of solvent volume.

  • PDF

A Study on Residual Stress Measurements by Using Laser Speckle Interferometry (레이저 간섭법을 이용한 잔류응력 측정 방법에 대한 연구)

  • Rho, Kyung-Wan;Kang, Young-June;Hong, Seong-Jin;Kang, Hyung-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.1
    • /
    • pp.16-24
    • /
    • 1999
  • Residual stress is one of the causes which make defects in engineering components and materials. And interest in the measurement of residual stress exists in many industries. There are commonly used methods by which residual stresses are currently measured. But these methods have a little demerits. time consumption and other problems. Therefore we devised a new experimental technique to measure residual stress in materials with a combination of laser speckle pattern interferometry, finite element method and spot heating. The speckle pattern interferometer measures in-plane deformations while the heating provides for very localized stress relief. FEM is used for determining heat temperature and other parameters. The residual stresses are determined by the amount of strain that is measured subsequent to the heating and cool-down of the region being interrogated. A simple model is presented to provide a description of the method. In this paper, the ambiguity problem for the fringe patterns has solved by a phase shifting method.

  • PDF

A Study on the Residual Expansibility of Electric Arc Furnace Slag Aggregate (전기로슬래그 골재의 잔류팽창성에 대한 고찰)

  • Yoo, Jung-Hoon;Choi, Jae-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.128-135
    • /
    • 2006
  • Steel slag (divided into electric arc furnace slag and convener slag) is being produced by millions of tons per every year in many industrial countries. About 6.5 million tonnes of steel slag is produced yearly as an industrial by-product in Korea. Generally natural aggregate is relatively stable and does not enter into complex chemical reactions with water. Unfortunately, however. steel slag aggregate contains a small amount of free lime. The hydration of free lime makes steel slag aggregate unstable and liable to expand. In this paper, firstly, several aging methods are used in order to decrease the volume expansion of electric arc furnace slag, that is stabilization. The volume expansion of electric arc furnace slag is formulated from the experiment. From the formula, the residual expansibility is predicted with immersion expansion. Compressive strength of concrete with electric arc furnace slag has relation with the residual expansibility in slag aggregate.

  • PDF

Sintering of Layer Structure Materials: Effect of Starting Material on Sintering Defects and Residual Stress (층상구조 재료의 소결: 출발물질이 소결결함 및 잔류응력에 미치는 영향)

  • 정연길
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.1
    • /
    • pp.61-68
    • /
    • 1999
  • To analyze several defects and residual stress in sintering of layer structure materials, multiayer materials with TZP/SUS and ZT/SUS, and bilayer materials with porcelain/alumina and porcelain/Y-TZP were fabricated by sintering method. Multilayer materials prepared by pressureless sintering show the sintering defect such as warping, splitting, cracking originated from the difference of sintering shrinkage between each layer, which could be controlled by the adjustment of number and thickness in interlayer. In tape casting, a certain pressure given during sintering relaxed the sintering defects, specially warping. The residual stress in bilayer was examined with Vickers indentation method. A small tensile stress in porcelain/alumina and a large compressive stress in porcelain/Y-TZP were generated on the porcelain interface due to the thermal expansion mismatch, which affected the strength of bilayer materials. As a consequence, the sintering defects of multilayer materials and the residual stresses of bilayer materials were dominantly influenced on material design and starting material constants.

  • PDF