• Title/Summary/Keyword: 잔류토양

Search Result 501, Processing Time 0.026 seconds

Behaviour of the soil residues of the herbicide quinclorac in the micro-ecosystem (pot) (Micro-ecosystem(pot)중 제초제 quinclorac 토양잔류물의 행적)

  • Ahn, Ki-Chang;Kyung, Kee-Sung;Lee, Jae-Koo
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.3
    • /
    • pp.96-106
    • /
    • 1998
  • Rice plants were grown for 42 days in the specially made micro-ecosystem(pot) containing two different soils treated with fresh and 60-day-aged residues of [$^{14}C$]quinclorac, respectively, to elucidate the behaviour of the herbicide quinclorac residues in the soils. Amounts of $^{14}CO_{2}$ evolved from two soils treated with different residues with and without vegetation were all less than 2.2% of the total $^{14}C$, indicating that there was little microbial degradation of quinclorac in soil. $^{14}C$-Radioactivity absorbed and translocated into rice plants from soil A and B containing fresh quinclorac residues was 8.4 and 24.2%, respectively, of the originally applied $^{14}C$, while 5.5 and 17.7%, in aged residue soils. These results indicate that larger amounts of $^{14}C$ were absorbed by rice plants from soil B with less organic matter and clay than soil A, and the uptake of [$^{14}C$]quinclorac and its degradation products decreased with aging in soil. After 42 days of rice growing, 84.5 and 61.8% of the $^{14}C$ applied freshly to soil A and B, respectively, remained in soil, whereas, in the case of aged soils, 86.3 and 67.7% of the $^{14}C$ applied did. Meanwhile, without vegetation, more than 98.3% of the $^{14}C$ applied, in both fresh and aged residues, remained in soil, suggesting that quinclorac was relatively persistent chemically and microbiologically. Most of the non-extractable soil-bound residues of [$^{14}C$]quinclorac were incorporated into the organic matter and largely distributed in the fulvic acid portion.

  • PDF

농약과 잔류성III - 토양중의 농약잔류(하) - 잔류성 지배요인은 무엇인가

  • 이해근
    • The Bimonthly Magazine for Agrochemicals and Plant Protection
    • /
    • v.9 no.2
    • /
    • pp.32-38
    • /
    • 1988
  • 농약을 매년 사용하게 되면 토양 중의 농약잔류량은 계속 증가할 것으로 생각되기 쉬우나, 실제로 토양중 농약잔류량은 지수 함수적으로 감소하기 때문에 매년 계속해서 사용하더라도 몇 년 후에는 평형상태에 도달하여 그 이상은 증가하지 않기 때문이다.

  • PDF

Growth and crop residue of soybean and barley grown at high paraquat level of the orchard soil (고농도 paraquat 잔류 과원토양에서의 콩과 보리 생육 및 작물 잔류)

  • Chun, Jae-Chul;Park, Nam-Il;Kim, Sung-Eun;Chun, Jae-Kwan
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.3
    • /
    • pp.85-89
    • /
    • 1998
  • Effect of soil residue paraquat (1,1-dimethyl-4,4-dipyridinium dichloride) on growth of barley (Hordeum vulgare L. cv. Sacheon No.6 and cv. Tapgolbori) and soybean [Glycine max (L.) Merr. cv. Alcheon and Danyeop] was investigated. Changes in soil residue paraquat during the cultivation period and residue amount in the p1ants at harvest were also determined. Experiments were conducted at two paraquat residue conditions; the first was done in an apple orchard soil where paraquat residue recorded 30.2 ppm in 1996, but decreased to about 9 to 9.8 ppm at the time of crop seeding and the second was conducted in the soil fortified to about 27 to 32 ppm paraquat residue. In both conditions, no crop injury due to the residue paraquat was observed and number of emerged seedlings and plant height of the two crops were not affected by soil residue paraquat. Residue amount of paraquat in the plants occurred less than 0.5 ppm detection limit. At the first condition, soil residue paraquat was further slightly decreased for 90 days after seeding, while no great change in the residue level was found at the second condition for 30 days after seeding. The results suggest that no carry-over effect occurs at about 30 ppm of soil residue paraquat and at present crop cultivation in Korean orchard soils are safe with respect to crop growth and paraquat residue in the plants.

  • PDF

Monitoring of Residual Pesticides in Agricultural Land from the Southern Area of Seoul (서울 강남지역 채소류 경작지의 토양 중 잔류농약 실태조사)

  • Choi, Chae-Man;Yook, Dong-Hyeon;Hong, Chae-Kyu;Kim, Tae-Rang;Hwang, Young-Sook;Hwang, In-Sook;Kim, Jung-Hun;Kim, Mu-Sang;Chae, Young-Zoo
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.2
    • /
    • pp.160-165
    • /
    • 2011
  • Monitoring of pesticide residues were conducted at three sites in the Southern Area of Seoul, Korea (Gang-nam, Gang-dong and Song-pa). We measured pesticide residues within soil samples using multi-pesticide residues analysis. Samples were collected at the three sites with 60 sampling spots. The amount of pesticide residues in the soil samples were as follows [(minimum-maximum), mg/kg] endosulfan 0.002-0.999, procymidone 0.002-1.200, diazinon 0.003-0.024, metalaxyl 0.012-0.075. In soil treated with 0.445 mg/kg of endosulfan, the pesticide absorbed by chamnamul, was 0.157 mg/kg (Absorption rate : 35.3%). However, in soil treated with 0.358 mg/kg of endosulfan, the pesticide absorbed by lettuce, was 0.004 mg/kg (Absorption rate : 1.1%).

A Study on Degradation Rate of Carbofuran in Sterilized Soil and Sulfate-added Paddy Soil (Carbofuran의 담수토양중(湛水土壤中) 분해(分解)에 대한 토양(土壤)의 멸균(滅菌)과 황산염(黃酸鹽) 첨가(添加)의 영향(影響)에 관(關)한 연구(硏究))

  • Tu, Ock-Ju
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.1
    • /
    • pp.11-15
    • /
    • 1998
  • Carbofuran was incubated for four weeks in five types of paddy soil samples at $25^{\circ}C$. The soil samples prepared in the study were as follows : control soil, sterilized soil, 10% cellulose added soil, 10% cellulose and 1% ferrous sulfate added soil, and 10% cellulose and 1% magnesium sulfate added soil. The degradation rate of carbofuran was significantly decreased(p<0.05) in sterilized soil.The degradation rate of carbofuran was significantly decreased by addition of cellulose(p<0.05) in femous sulfate added soil and magnesium sulfate added soil(p<0.01).

  • PDF

Dissipation of Cyclosulfamuron in Rice Paddies (수도 재배환경 중 제초제 Cyclosulfamuron의 잔류특성)

  • Lee, Young-Deuk;Song, Sung-Do
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.4
    • /
    • pp.269-276
    • /
    • 2001
  • Several experiments including persistence, distribution, leaching, and terminal residue trials were carried out to investigate the behavior of cyclosulfamuron in rice paddies. Cyclosulfamuron was gradually dissipated in two different soils showing the first-order kinetics. Half-lives of the herbicide were calculated to be $17{\sim}30$ and $14{\sim}16$ days under field and laboratory conditions, respectively. In the paddy soil/water system, the residue tended to reside more in the soil phase as time elapsed. Cyclosulfamuron was less persistent in paddy water than in soil with half-lives of 10 and 19 days, respectively. No cyclosulfamuron was leached below 20 cm-deep soil during water percolation with 50 cm hydraulic head, while some downward mobility was observed within the soil column. When EC and SC formulations of cyclosulfamuron were applied to the paddy field at 120 or 150-day pre-harvest intervals, its terminal residues in hulled rice were all less than 0.01 mg/kg, irrespective of formulation type and application timing. In rice straw, however, some residues were found at $<0.02{\sim}0.05$ mg/kg as SC formulation was applied. Rapid dissipation, restricted mobility, and low terminal residues of cyclosulfamuron in rice paddies suggest that no significant residues would be transported or carried over to the non-target environment.

  • PDF

플럭 형성 비소 오염토양에 대한 토양세척기법의 적용성 연구

  • Hwang Jeong-Seong;Choi Sang-Il;Han Sang-Geun;Kim Ju-Yeong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.264-267
    • /
    • 2005
  • 플럭 형성 비소 오염토양에 대한 토양세척기법의 적용성 실험결과, 세척용액 100 mM과 500 mM의 농도에서 대상 토양에 대한 비소 용출량은 수산화나트륨이 염산보다 높은 효율을 보였으며, 농도 1000 mM의 경우에는 염산이 비교적 우세한 세척효율을 보였다. 토양오염공정시험법에 의한 세척후 토양내 잔류비소 농도의 경우, 염산이 수산화나트륨과 비슷하거나 다소 우세함을 알 수 있었다. 세척 대상 토양의 Cut-off size limit을 선정하여 토양세척시 생성되는 플럭을 제거하지 않고 반복 세척한 결과, 수산화나트륨의 농도 200 mM은 1000 mM에 비하여 잔류된 비소량이 비슷하거나 비교적 높았으며, 2가지 농도에 대하여 총 5회 반복 세척한 토양의 비소 농도는 토양환경보전법의 가지역 우려기준 농도인 6 mg/kg에 근접한 결과를 보였으나, 염산의 경우 총 5회 세척시 비소의 농도가 약 9 mg/kg으로 비소 잔류량이 보다 큼을 알 수 있었다. 플럭을 제거한 후 반복 세척시 수산화나트륨의 농도 1000 mM이 200 mM에 비하여 토양 세척효율이 증가하였으며, 1000 mM로 5회 세척시 잔류비소 농도가 가지역 우려기준 농도에 근접한 약 6.7 mg/kg이었고 염산을 이용하여 세척한 경우에는 3회 세척시 약 6.7 mg/kg 4, 5회 반복 세척시 각각 약 3.9, 3.3 mg/kg으로 가지역 우려기준에 적합한 농도조건이 됨을 알 수 있었다.

  • PDF