• Title/Summary/Keyword: 잔류응력 거동

Search Result 250, Processing Time 0.026 seconds

Ultrasonic evaluation of small surface fatigue cracks initiating in residual stress zone (잔류응력 영역에서 발생한 작은 피로균열의 초음파 평가)

  • Kang Kae-Myung;Kim Jin-Yeon
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.1 s.9
    • /
    • pp.55-62
    • /
    • 2000
  • A surface acoustic wave method for the evaluation of small fatigue crack initiated from a pit-type surface flaw is presented. In-situ ultrasonic experiments are performed for aluminum 2024-T3 alloy samples under the fatigue test. During the fatigue test, the surface acoustic wave reflection signal from the pit and crack is measured under different hold-stress levels. From the measured and predicted surface wave reflections the depths of fully and partially open cracks are determined and results are verified by comparing with SEM fractography The crack opening behavior of the fatigue crack is evaluated from the predicted effective crack depths. The method developed in this study can be applied to monitor and characterize crack initiation and propagation from pit-type surface flaws in the early stage of fatigue life.

  • PDF

Effects of the Thermal Cracking on the Deformation Behaviour of Granites (열균열이 화강암의 변형거동에 미치는 영향)

    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.249-256
    • /
    • 1998
  • Pocheon, Keochang and Sangju granite samples of different granularity and mineralogical composition were thermally treated at pre-determined temperature of $600^{\circ}C$. Thermally-induced microcracks were characterized using an optical microscopy and their effects on the deformation behavior of thermally cycled samples were studied performing compressive mechanical tests. Optical observations shows that by $600^{\circ}C$ nearlly all crystal boundaries open and the new intracrystalline cracks form in the more grains. The intracrystalline cracks are most pronounced at thermally treated Pocheon and Keochang granite samples. Results from mechanical tests represents negative lateral strains, which give negative Poisson's ratios. It is the most probable that negative lateral strains are produced by residual stresses induced during cooling.

  • PDF

Study on numerical analysis for capability improvement of long span bridge with orthotropic steel deck (장지간 교량의 강바닥판 성능 강화를 위한 수치해석 연구)

  • Kong, Byung-Sueng;Kim, Jae-Gon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.669-672
    • /
    • 2011
  • 본 논문은 사하중 절감이 중요한 장지간 교량에 있어서 유리한 구조를 가지는 강바닥판의 성능 강화를 위한 수치해석 연구를 실시하였다. 이미 국내외에서는 다수의 강바닥판을 이용한 교량의 시공 사례가 많으며, 앞으로도 시공 또는 계획될 해상 장지간 교량에서도 강바닥판 교량의 사례가 많을 것으로 판단된다. 강바닥판 교량은 공기를 단축할 수 있으며, 들보의 높이가 작아서 날씬한 형상으로 할 수 있기 때문에 미관을 향상 시킬 수 있을 뿐만 아니라 가설 공사비를 절감시킬 수 있는 등 많은 장점을 갖고 있다. 하지만 강바닥판은 이상과 같이 장점을 갖는 구조이지만 비교적 얇은 강판을 복잡한 형상으로 용접하여 조립함에 용접 결함, 잔류응력, 면내 및 면외 변형의 발생 등의 문제점이 지적되고 있다. 따라서 외국에서는 강바닥판의 피로 손상에 대한 실험 및 연구로 많은 자료를 확보하고 있으며, 국내에서도 국내 현실에 맞는 강바닥판의 피로거동 및 피로강도 향상방안에 관한 연구가 더욱더 필요하다. 본 연구에서는 국내교량에 적용되고 있는 구조상세 및 구조해석을 실시하여 강바닥판의 피로거동과 응력 특성을 파악하고, 피로강도를 향상하는 방법으로 Bulkhead Plate와 수직리브 형상 및 부착에 따른 거동을 분석하고, 최적상세를 도출하여 강바닥판의 적극적인 활용화에 그 목적이 있다.

  • PDF

Fatigue Crack Propagation Characteristics of Duplex-Stainless Steel Weldment (III) (2상계 스테인리스강 용접부의 피로크랙전파 특성 (III))

  • 이택순;권종완
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.901-910
    • /
    • 1989
  • Corrosion fatigue crack propagation behavior of duplex stainless steel weldments in substitute ocean water was investigated to evalulate effects of micro-structural change and residual stresses. Fatigue crack propagation rate was found influenced markedly .alpha./.gamma. phase ratio but little by residual stresses. Fatigue crack propagation rate is higher in the corrosive environment than in room atmosphere. The crack propagation rate estimated by the measurement of striation spacing was higher than that, obtained by crack length measurement in low .DELTK.K region. At hight .DELTK.K region, however, both crack propagation rates were found to be identical.

A Study on the Interfacial Bonding in AlN Ceramics/Metals Joints: I. Residual Stress Analysis of AlN/Cu and AlN/W Joints Produced by Active-Metal Brazing (AlN 세라믹스와 금속간 계면접합에 관한 연구 : I. AlN/Cu 및 AlN/W 활성금속브레이징 접합체의 잔류응력 해석)

  • Park, Sung-Gye;Lee, Seung-Hae;Kim, Ji-Soon;You, Hee;Yum, Young-Jin
    • Korean Journal of Materials Research
    • /
    • v.9 no.10
    • /
    • pp.962-969
    • /
    • 1999
  • Elastic and elasto-plastic stress analyses of AlN/Cu and AlN/W pints produced by active-metal brazing method using Ag-Cu-Ti insert-metal were performed with use of Finite-Element-Method(FEM). The results of stress analyses were compared with those from the pint strength tests and the observations of fracture behaviors. It was shown that a remarkably larger maximum principal stress is built in the AlN/Cu pint compared to the A1N/ W joint. Especially, the stress concentration with tensile component was confirmed at the free surface close to the bonded interface of AlN/Cu. The elasto-plastic analysis under consideration of stress relaxation effect of Ag-Cu-Ti insert possessing a so-called 'soft-metal effect' showed that the insert leads to a lowering of maximum principal stress in AlNiCu pint, even though an increase of the insert thickness above 100$\mu\textrm{m}$ could not bring its further decrease. The maximum pint strengths measured by shear test were 52 and 108 MPa for AlNiCu and AlN/W pints. respectively. Typical fractures of AlN/Cu pints occurred in a form of 'dome' which initiated from the free surface of AlN close to the bonded interface and proceeded towards the AlN inside forming a large angle. AlN/W pints were usually fractured at AlN side along the interface of AlN/insert-metal.

  • PDF

Effect of Groove Shape on Residual Stress Distribution in Narrow Gap Welds (용접부 형상이 협개선 용접부 잔류응력 분포에 미치는 영향)

  • Soh, Na-Hyun;Yang, Jun-Seok;Pyo, Chang-Ryul;Huh, Nam-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.635-642
    • /
    • 2011
  • It is well known that conventional welding techniques can result in welding defects due to the large groove angle of the weld. In this context, the narrow gap welding (NGW) technique is applied in the nuclear industry because of its inherent merits such as the reduction in welding time and the shrinkage of the weld, and the small deformation of the weld resulting from the small groove angle and welding bead width. In this paper, the distribution of welding residual stress and deformation behavior of the ER308L weld due to NGW are predicted through nonlinear two-dimensional finite element analysis, in which the actual NGW process is simulated in detail. In particular, the effects of the shape of weld, i.e., the width of the weld and the shape of the welding groove, on the residual stress are investigated. The present results can be used to assess the integrity of defective nuclear components and to improve the welding process.

Fatigue Behavior with Respect to Rolling and Residual Stress in Butt-welded Steel Plate (맞대기 용접 강판재에서 압연 및 잔류응력에 의한 피로거동)

  • Lee Yong-Bok;Oh Byung-Duck;Kim Sung-Yeup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.826-832
    • /
    • 2006
  • For the improvement of safety and endurance in welded steel structure, it is needed to consider welding residual stress distribution and rolling directional characteristics of materials. In this study, it was investigated experimentally about characteristics of fatigue crack propagation according to welding residual stress and rolling in FCAW(flux cored arc welding) butt-jointed steel plates. SS400 steel plates of 3mm thickness were selected and tested for this study. When the angles between tensile loading direction and rolling direction in welded materials are increased from $0^{\circ}\;to\;90^{\circ}$, their fatigue crack propagation rates are increased. These results are same as predicted increments of fatigue crack propagation rate when stress ratio is increased from 0 to 0.5. When the angles of rolling direction and welding direction to tensile loading direction are $0^{\circ}\;and\;90^{\circ}$ respectively, fatigue crack propagation rate in welded material is lowest.

A Study on the Effects of local PWHT on the Residual Stress of the Weldment in Pressure Vessel (압력용기 용접부 국부 열처리에 따른 잔류응력 거동에 관한 연구)

  • Lee, Hui-Tae;Kim, Gyeong-Gyu
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.18-19
    • /
    • 2006
  • The purpose of this study is to evaluate the behavior of residual stress at the weldment of pressure vessel by local Post Weld Heat Treatment(PWHT). In order to do it, residual stress were measured before and after local PWHT by XRD on the test piece first. And then, the results of finite element(FE) analysis based on thermal-elasto-plastic-creep theories were verified by comparing with the measured results.

  • PDF

A Study on the Influence Residual Stresses on Fatigue Crack Growth Behaviors in the Butt Welded Plate (Butt 용접판재에서의 피로균열성장거동에 미치는 잔류응력의 영향에 관한 연구)

  • 차용훈;정종안;채경수;김하식
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.2
    • /
    • pp.64-71
    • /
    • 1993
  • In this study, the purpose is to investigate the influence of initial residual stresses on the fatigue crack growth behaviors after the distribution of initial residual stresses Is measured when the crack is growing from the compressive residual stresses field to the tensile residual stress field. Also, the Influence of the variation of residual stress distribution on the fatigue crack growth behaviors at the crack tip is studied when the initial crack li applied on base metal, weld metal and HAZ respectively.

  • PDF

Study on Torsional Strength of Induction-Hardened Axle Shaft (고주파 열처리를 고려한 액슬 축 비틀림 거동 연구)

  • Kang, Dae-Hyun;Lee, Bum-Jae;Yun, Chang-Bae;Kim, Kang-Wuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.645-649
    • /
    • 2010
  • Induction hardening has been used to improve the torsional strength and characteristics of wear for axle shaft that is used to transmit driving torque from the differential to the wheel in automobiles. After the rapid heating and cooling processes of induction hardening are carried out, the shaft has residual stress and material properties change; this affects the allowable transmitted torque. The objective of this study is to predict the distribution of residual stress and estimate the torsional strength of induction-hardened axle shafts with residual stress. In this study, the finite element method is used to study the thermomechanical behavior of the material, and the results are compared with experimental results. The results indicate that the torsional strength of the axle shaft depends on the surface hardening depth and distribution of residual stress.