• 제목/요약/키워드: 잔류오스테나이트

검색결과 56건 처리시간 0.03초

오스템퍼드 구상흑연주철품의 기계적 성질에 미치는 잔류오스테나이트량의 영향 (Effect of the Amount of Retained Austenite on the Mechanical Properities of Austempered Ductile Iron)

  • 최준오;이상학;최창옥;박성택
    • 열처리공학회지
    • /
    • 제15권4호
    • /
    • pp.178-187
    • /
    • 2002
  • Austempered Ductile Iron (ADI) castings having various chemical composition and heat treatment conditions were investigated. Especially, this study was investigated the influence of various parameters on austempering temperature and alloying elements. The addition of Mo, Cu, and Ni individually or combined in these alloys also investigated. The alloying elements influence the austempering reaction, the microstructures, mechanical properties and amount of retained austenite. In this study, the mechanical properties (ultimate tensile strength(UTS), hardness, elongation) are analysed to show the relationship between alloying elements, austempering temperatures and amount of retained austenite. The amount of retained austenite was the range of 15 - 40%. In case of the alloy to witch Mo, Cu, and Ni was added, the amount of retained austenite was the largest at a constant austempering temperature.

SA508-cl.3강의 ICCG HAZ의 인성에 미치는 M-A Constituentsm의 영향 (Effects of M-A Constituents on Toughness in the ICCG HAZ of SA508-cl.3 Pressure Vessel Steel)

  • 권기선;김주학;홍준화;이창희
    • Journal of Welding and Joining
    • /
    • 제17권3호
    • /
    • pp.55-65
    • /
    • 1999
  • Metallurgical factors influencing toughness of the Intercritically Reheated Coarse-Grained Heat Affected Zone (ICCG HAZ) of multiple welded SA508-cl.3 Reactor Pressure Vessel Steel were evaluated. The recrystallized austenite formed along the prior austenite grain boundaries and late interfaced on heating to the intercritical range was transformed to bainite and/or martensite during cooling. The newly formed martensite always included some retained austenite(M-A constituents). The characteristics(amount, hardness, density, and size) of M-A constituents were found to be strongly associated with both peak temperature and cooling time(△t8/5(2)) of last pass. Toughness in the ICCG HAZ was deteriorated with increasing amount of M-A constituents which was increased with increasing the last peak temperature within the intercritical temperature range. Meanwhile, for the same intercritical peak temperature, toughness was decreased with increasing cooling time. When cooling time was short, the dominant factor influencing toughness of the ICCG HAZ was amount of M-A constituents. However, when cooling time was lengthened, the hardness difference between M-A constituents and softened matrix(tempered martensite) was found to be the dominant factor.

  • PDF

고 Mn 스테인리스강의 감쇠능에 미치는 잔류 및 역변태 오스테나이트의 영향 (Effect of Retained and Reversed Austenite on the Damping Capacity in High Manganese Stainless Steel)

  • 김영화;이상환;김슬기;강창룡
    • 한국재료학회지
    • /
    • 제25권1호
    • /
    • pp.9-15
    • /
    • 2015
  • The effect of retained and reversed austenite on the damping capacity in high manganese stainless steel with two phases of martensite and austenite was studied. The two phase structure of martensite and retained austenite was obtained by deformation for various degrees of deformation, and a two phase structure of martensite and reverse austenite was obtained by reverse annealing treatment for various temperatures after 70 % cold rolling. With the increase in the degree of deformation, the retained austenite and damping capacity rapidly decreased, with an increase in the reverse annealing temperature, the reversed austenite and damping capacity rapidly increased. With the volume fraction of the retained and reverse austenite, the damping capacity increased rapidly. At same volume of retained and reversed austenite, the damping capacity of the reversed austenite was higher than the retained austenite. Thus, the damping capacity was affected greatly by the reversed austenite.

4~8%Mn 열연 TRIP강의 잔류오스테나이트 생성과 기계적 성질 (Formation of Retainted Austenite and Mechanical Properties of 4~8%Mn Hot Rolled TRIP Steels)

  • 김동은;박영구;이오연;진광근;김성주
    • 한국재료학회지
    • /
    • 제15권2호
    • /
    • pp.115-120
    • /
    • 2005
  • The aim of this research is to develop the TRIP aided high strength low carbon steels using reverse transformation process. The $4\~8\%$ Mn steel sheets were reversely transformed by slow heating to intercritical temperature region and furnace cooling to room temperature. The stability of retained austenite depends on the enrichment of carbon and manganese by diffusion during the reverse transformation. The amount of retained austenite formed after reversely transformed at $625^{\circ}C$ for 6 hrs was about $50\;vol.\%$ in the $8\%Mn$ steel. The change in volume fraction of retained austenite with a holding temperature was consistent with the changes in elongation and the strength-ductility combination. The maximum strength-ductility combination of 40,000 $MPa{\cdot}\%$ was obtained when the $8\%Mn$ steel reversely transformed at $625^{\circ}C$ for 12 hrs. However, it's property was significantly decreased at higher holding temperature of $675^{\circ}C$ resulting from the decrease of ductility.

C-Mn계 TRIP강의 잔류오스테나이트 생성과 기계적 성질에 미치는 역변태처리의 영향 (Effect of Reverse Transformation Treatment on the Formation of Retained Austenite and Mechanical Properties of C-Mn TRIP Steels)

  • 유재선;홍호;이오연;진광근;김성주
    • 한국재료학회지
    • /
    • 제14권2호
    • /
    • pp.126-132
    • /
    • 2004
  • The high strength steel sheets has been widely used as the automobile parts to reduce the weight of a vehicle. The aim of this research is to develop the TRIP aided high strength low carbon steels using reverse transformation process. The 0.15C-4Mn and 0.15C-6.5Mn steel sheets were reversely transformed by slow heating to intercritical temperature region and air cooling to room temperature. The stability of retained austenite depends on the enrichment of carbon and manganese by diffusion during the reverse transformation. The amount of retained austenite formed after reversely transformed at $645^{\circ}C$ for 12 hrs. was about 46vol.% in hot rolled 0.lC-6.5Mn steel. The change in volume fraction of retained austenite with a holding temperature was consistent with the changes in elongation and the strength-ductility combination. The tendency of tensile strength to increase with increasing the holding temperature was due to the decrease of retained austenite after cooling from the higher temperature of $670 ^{\circ}C$. The maximum strength-ductility combination was about 4,250 kg/$\textrm{mm}^2$ㆍ% when the hot rolled 0.lC-6.5Mn steel was reversely transformed at $645^{\circ}C$ for 12 hrs.

304 및 316L 스테인레스강 미립 분말의 소결 특성 (Sintering Characteristics of 304 and 316L Stainless Steel Fine Powder)

  • 임태환
    • 한국산학기술학회논문지
    • /
    • 제9권6호
    • /
    • pp.1555-1559
    • /
    • 2008
  • $5{\sim}150{\mu}m$의 오스테나이트계 304(Fe-18%Cr-12%Ni) 및 316L(Fe-18%Cr-13%Ni-2.4%Mo)미립 분말을 사용하여 소결 특성을 평가한 결과, 다음과 같은 결론을 얻었다 (1) 3.6ks의 소결 시간으로는 어느 경우에 있어서나 소결조건에 관계없이 소결체의 상대밀도는 $95{\sim}98%$에서 포화하여 완전 치밀화된 소결체를 얻을 수 없었다. (2) $5{\mu}m$분말을 진공소결 하였을 경우, ts=57.6ks에서 거의 완전 치밀화된 소결체가 얻어졌다. (3) 소결 분위기에 상관없이 304 및 316L소결체에는 $0.5{\sim}0.6%$정도의 산소가 잔류하였다. (4) 진공 소결의 경우, 탄소분 첨가에 의해 소결체의 잔류 산소량은 무첨가 소결체에 비하여 0.375이상 감소하였고, 조직적으로도 산화물은 거의 관찰되지 않았다. 또한 탄소 첨가는 소결체의 밀도 향상 효과로 작용하여 목적하는 완전 치밀화된 고성능 소결체를 제조하는 것이 가능하게 되었다.

Q&P와 AM강의 잔류오스테나이트 분율과 안정도에 따른 인장특성 거동 (Effects of Stability and Volume Fraction of Retained Austenite on the Tensile Properties for Q&P and AM Steels)

  • 변상호;오창석;남대근;김영석;강남현;조경목
    • 한국재료학회지
    • /
    • 제19권6호
    • /
    • pp.305-312
    • /
    • 2009
  • The effects of Quenching and Partitioning (Q&P) and Annealed Martensite (AM) heat treatment on the microstructure and tensile properties were investigated for 0.24C-0.5Si-1.5Mn-1Al steels. The Q&P steels were annealed at a single phase ($\gamma$) or a dual phase (${\gamma}+{\alpha}$), followed by quenching to a temperature between $M_s$ and $M_f$. Then, enriching carbon was conducted to stabilize the austenite through the partitioning, followed by water quenching. The AM steels were intercritically annealed at a dual phase (${\gamma}+{\alpha}$) temperature and austempered at $M_s$ and $M_s{\pm}50^{\circ}C$, followed by cooling in oil quenching. The dual phase Q&P steels showed lower tensile strength and yieldyield strength than those of the single phase Q&P steels, and tThe elongation for the dual phase Q&P steel was partitioning 100s higher than that of that for the single phase Q&P steels as the partitioning time was less than 100s up to partitioning 100s. For AM steels, the tensile/yield strength decreased and the total elongation increased as the austempering temperature increased. The stability of the retained austenite controlled the elongation for Q&P steels and the volume fraction of the retained austenite controlled the elongation for AM steels.

Fe-Si-Mn-P강판의 초기조직변화가 잔류오스테나이트 형성 및 인장성질에 미치는 영향 (Effect of Initial Structure on the Retained Austenite and Tensile Properties of Fe-Si-Mn-P Steel Sheet)

  • 문원진;강창용;김한군;김기돈;성장현
    • 열처리공학회지
    • /
    • 제10권1호
    • /
    • pp.10-19
    • /
    • 1997
  • This study has been conducted to investigate the effects of initial structure on the microstructure and tensile properties of high strength trip steel sheet. The initial structure before austempering remarkably influenced the second phase. The specimen with normalized initial structure showed mainly bainitic ferrite and retained austenite, while the as rolled specimen and spherodized specimen showed martensite plus retained austenite and martensite plus bainitic ferrite with small retained austenite, respectively. Two type of retained austenite, film type and granual type were observed in all specimens. The as rolled specimen appeared the highest contents of retained austenite owing to the compressive stress by cold rolling. The contents of retained austenite increased with increasing intercritical annealing temperature and austempering time. Tensile strength showed the highest in the as rolled specimen, while the highest elongation were obtained in the normalized specimen. The maximum T.S.${\times}$El. Value showed in normalized initial structure and increased with increasing intercritical annealing and austempering time. The highest Value of T.S.${\times}$El. obtained at austempering temperature of $400^{\circ}C$ and retained austenite of 12%.

  • PDF

Fe-0.7%C-2.3%Si강의 미세조직과 기계적 성질에 미치는 잔류 오스테나이트 변태 거동 (Transformation Behavior of Retained Austenite on Microstructure and Mechanical Properties in Fe-0.7wt%C-2.3wt%Si Steel)

  • 손제영;권도영;김지훈;김원배;김학진;예병준
    • 한국주조공학회지
    • /
    • 제32권3호
    • /
    • pp.138-143
    • /
    • 2012
  • This steel has been synthesized integrating concepts from Austempering Ductile Cast Iron (ADI) technology. While ADI has excellent mechanical and physical properties, the Young's modules of ADI is approximately 20% lower than steel. In addition, the presence of graphite nodules in ADI can be sites of crack initiation, where fracture takes place at graphite matrix interface. Because of this limitations of ADI, there has been a growing interest in austempered steels as structural materials in resent years. In this investigation, a new steel with microstructure composed of ferrite and austenite and with simultaneous high tensile strength (1,150 MPa) and high ductility (33%) was developed. The goal of this investigation is to obtain a better understanding of deformation and transformation behaviour in high carbon retained austenite(${\gamma}_{HC}$) and over-saturated ferrite(${\alpha}$) during the plastic deformation. A detailed study of the microstructure of this steel was carried out by means of X-ray diffraction (XRD) and electron back scattering diffraction (EBSD) technic. In this way it was shown that BCC phase (BCC) took up the larger part of the nominal strain whereas the a part of retained austenite responded to the mechanincal load by partial martensite transformation, and misorientation change in the retained austenite after plastic strain could be attributed to the large elongation.

액화천연가스 저장용 폐라이트계 Ni 첨가강의 물성 및 개발 동향 (State-of-the-Art of the Ni-bearing Ferritic Steels for LNG Storage Facilities)

  • 한승전;김형식;홍성호;김성준
    • 한국가스학회지
    • /
    • 제2권3호
    • /
    • pp.78-87
    • /
    • 1998
  • 액화천연가스 저장용 소재로 널리 사용되고 있는 Ni 함유 페라이트 강은 $2-3\%,\;5.5\%,\;9\%$ 그리고 $13\%$ Ni 강으로 크게 분류되고 그 중에서도 경제성이 있으며 $-196^{\circ}C$까지의 온도에서 파괴인성과 용접성이 매우 우수한 $9\%$ Ni강이 가장 많이 사용되고 있다. 저온에서의 우수한 파괴인성은 Ni 첨가에 의한 잔류 오스테나이트 및 페라이트의 안정화 그리고 열처리효과에 기인한다. 최근 액화천연가스 저장탱크의 대형화에 따라 보다 두껍고 인성이 큰 소재가 요구되며, 따라서 이에 부응하는 저온용 Ni 함유 페라이트 강의 개발동향을 소개하였다.

  • PDF