• Title/Summary/Keyword: 잔디블록

Search Result 16, Processing Time 0.021 seconds

Physical Properties of Soils under the Grass Block Porous Pavements (투수성 잔디블록 포장 하부 토양의 물리성)

  • Han, Seung-Ho;Kim, Won-Tae;Kang, Jin-Hyoung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.4 s.117
    • /
    • pp.96-104
    • /
    • 2006
  • Impervious pavement is primary contributor to the malfunctioning of the urban water circulation system. The aim of this research is to provide basic information and data for new pavement materials and paving technology which could enhance the urban water circulation system. For the study purposes, physical properties of soils sampled from 16 stations were analyzed. The sampling spots were paved with grass block porous pavement material. The findings from the analysis are as follows. The hardness of soils under the pavement was $17{\sim}22mm$ for thoroughfare and $6{\sim}32mm$ for parking areas. The bulk density was $1.42{\sim}1.81g/cm^{3}$ for thoroughfare and $1.38{\sim}1.75g/cm^{3}$ for parking area. The solid phase ration was $46.9{\sim}62.5m^{3}/m^{3}$ for thoroughfare and $45.6{\sim}61.3m^{3}/m^{3}$ for parking area. The porosity was $37.5{\sim}53.1m^{3}/m^{3}$ for thoroughfare and $38.7{\sim}54.4m^{3}/m^{3}$ for parking area. The saturated hydraulic conductivity was $8{\sim}164mm/hr$ for thoroughfare and $14{\sim}201mm/hr$ for parking area. The saturated hydraulic conductivity of the H sample area (the area was completed three months ago) and that of the other area were compared. There was up to 80% decreases of the saturated hydraulic conductivity within one year after the completion of pavement. After the first year, decrease in the saturated hydraulic conductivity was modest. Also there are changes in both surface and under soil physical properties of the grass block porous pavement depending on compaction. The extent of change depends on the degree of compaction. All these factors are combined to influence the permeability of the soil under the pavements. The results of this suggest that it is required to develop a new pavement technology which ensures both the durability and porosity of the pavement to improve the water circulation system by applying Ecological Area Rate.

Volume of Water Storage and Evapotranspiration by Inserted Materials at a Reservoir of Porous Grass Block (저수형 잔디블록 저수조 내 충진재료에 따른 저수량 및 초종별 증발산량)

  • Han, Seung-Ho;Choi, Joon-Soo;Yang, Geun-Mo;Yang, Byoung-E;Kang, Jin-Hyoung;Kim, Won-Tae
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.5 s.118
    • /
    • pp.76-83
    • /
    • 2006
  • The purpose of this study was to investigate the performance of porous grass block. For the investigation, Festuca arundinacea and Zoysia japonica 'Zenith' were planted, and the volume of evapotranspiration and remains were examined based on different materials in the water tank in the experiment of Festuca arundinacea, the volume of water storage of treatment with perlite ($10.84{\iota}/m^2$) was higher than that with drainage ($7l/m^2$). The difference between the two was $3.84/m^2$. The drainage treatment without water storage capacity showed the higher degree of dryness in turf grass. The volume of evapo-transpiration of treatment with perlite was the highest (21.57mm/week). The volume of evapotranspiration of treatment with sand was 19.57mm/week, and with treatment with drainage was 18.24mm/week. Based on the measured volume of daily evapotranspiration of $2.60{\sim}3.08mm\;d^{-1}$, it was determined that the unit with water storage capacity would store water of one to two days usage compared to unite without such storage capacity. In the experiment of Zoysia japonica 'Zenith', the volume of water storage of treatment with perlite was $10.77l/m^2$ which was similar to the former experiment. The volume of evapotranspiration of treatment with perlite and sand were 21.64mm/week and 20.64mm/week, respectively. In case of airtight water tank, the volume was measured as 22.06mm/week. Each treatment has no notable difference in the volume of evapotranspiration. In conclusion, from the investigation in this study, porous grass block with water tank was found to be effective in plant growth under low irrigation. As the ecological area ratio and vegetated porous pavement have became more emphasized, additional study of rain infiltration and reservoir effect are needed in the future.

Planting Properties of Herbaceous Plant and Cool-season Grass in Environmentally Friendly Planting Block Using CSG Materials (CSG 재료를 이용한 친환경 식생 블록 내 초본식물 및 한지형 잔디의 식생 특성)

  • Kim, Young-Ik;Yeon, Kyu-Seok;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.1
    • /
    • pp.33-40
    • /
    • 2010
  • The cemented sand and gravel (CSG) method is a construction technique that adds cement and water to rock-like materials, such as rivered gravel or excavation muck which that can be obtained easily at areas adjacent to dam sites. This study was performed to evaluate the planting properties of herbaceous plant and cool-season grass in CSG blocks that were manufactured by using CSG materials to develop environmentally friendly CSG method. The two types of CSG-0 without cement and CSG-100 with $100\;kg/m^3$ of cement were designed to evaluate compaction, unconfined compressive strength and growth of plants with cement content by using modified E compaction. To analyze growth properties of plants, germination ratio, visual cover, plant height and root length were measured in 4 weeks and 8 weeks after sowing. As the results, the germination regardless kinds of plants started within 5~7days and the germination ratio were in the range of 50~60 %. The visual cover of kinds of plants by visual rating system were in the range of 7~8 and the visual cover of tall fescue and perennial ryegrass was higher than that of lespedeza cuneata. The plant height and root length for tall fescue and perennial ryegrass in 8 weeks after sowing were in the range of 22~26 cm, 12~15 cm and 4~6 cm, 3~5 cm, respectively.

Heat Budget Analysis of Light Thin Layer Green Roof Planted with Zoysia japonica (한국잔디식재 경량박층형 옥상녹화의 열수지 해석)

  • Kim, Se-Chang;Lee, Hyun-Jeong;Park, Bong-Ju
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.6
    • /
    • pp.190-197
    • /
    • 2012
  • The purpose of this study was to evaluate thermal environment and heat budget of light thin layer green roof through an experiment in order to quantify its heat budget. Two concrete model boxes($1.2m(W){\times}1.2m(D){\times}1.0m(H)$) were constructed: One experiment box with Zoysia japonica planted on substrate depth of 10cm and one control box without any plant. Between June 6th and 7th, 2012, outside climatic conditions(air temperature, relative humidity, wind direction, wind speed), evapotranspiration, surface and ceiling temperature, heat flux, and heat budget of the boxes were measured. Daily maximum temperature of those two days was $29.4^{\circ}C$ and $30^{\circ}C$, and daily evapotranspiration was $2,686.1g/m^2$ and $3,312.8g/m^2$, respectively. It was found that evapotranspiration increased as the quantity of solar radiation increased. A surface and ceiling temperature of those two boxes was compared when outside air temperature was the greatest. and control box showed a greater temperature in both cases. Thus it was found that green roof was effective in reducing temperature. As results of heat budget analysis, heat budget of a green roof showed a greater proportion of net radiation and latent heat while heat budget of the control box showed a greater proportion of sensible heat and conduction heat. The significance of this study was to analyze heat budget of green roof temperature reduction. As substrate depth and types, species and seasonal changes may have influences on temperature reduction of green roof, further study is necessary.

Scenario-Based Analysis on the Effects of Green Areas on the Improvement of Urban Thermal Environment (녹지 조성 시나리오에 따른 도시 열환경 개선 효과 분석)

  • Min, Jin-Kyu;Eum, Jeong-Hee;Sung, Uk-Je;Son, Jeong-Min;Kim, Ju-Eun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.6
    • /
    • pp.1-14
    • /
    • 2022
  • To alleviate the urban heat island phenomenon, this study aims to quantitatively analyze the effects of neighborhood green spaces on the improvement of the thermal environment based on detailed scenarios of five types of green spaces, including parks, pocket parks, parking lot greening, roadside planting, and rooftop-wall greening. The ENVI-met 4.4.6v model, a microclimate simulation program, was used to analyze the effects of green spaces. As a result, it was found that the air temperature decreased as the planting density of the park increased, but the thermal comfort index PET, which is the degree of heat sensation felt by humans, was not directly proportional to temperature. The establishment of a pocket park reduced air temperature up to a radius of 56m, while the range of temperature reduction increased by about 12.5% when three additional pocket parks were established at 250m intervals. Unlike the air temperature, PET was only affected in the vicinity of the planted area, so there was no significant difference in the thermal comfort of the surrounding environment due to the construction of pocket parks. Changing the surface pavement from asphalt to lawn blocks and implementing rooftop or wall greening did not directly act as solar shading but positively affected air temperature reduction; PET showed no significant difference. Roadside planting showed a higher air temperature reduction effect as the planting interval was narrower, but PET was not directly proportional to tree density. In the case of shrub planting under trees, it did not significantly affect the air temperature reduction but positively affected the improvement of thermal comfort. This study can outline strategies for constructing neighborhood green spaces to solve the urban heat island phenomena and establish detailed strategies for efficient thermal environment improvements.

A Study on the Planting Design for the Renewal of Urban Neighborhood Park - In Case of Okgu Neighborhood Park, Siheung, Gyeonggi-do, Korea - (도시근린공원 리뉴얼을 위한 식재디자인 연구 - 경기도 시흥시 옥구공원을 대상으로 -)

  • Lee, Sang-Man;Jeong, Moon-Soon;Han, Bong-Ho;Park, Seok-Cheol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.1
    • /
    • pp.88-103
    • /
    • 2019
  • This paper aims to identify planting design for the renewal of Okgu Park, located in Siheung, Gyeonggi-do. I designate planting concept fit spatial functions and also suggest planting designs that are proper for a growth environment. The spatial functions of the research site are divided on the basis of the park facilities, its surroundings, and usage. To understand the planting concept, this paper looks into the distribution of plant species and the precise planting structure. To understand the planting concept and the current usage of shade space in the park, I examine the distribution of plant species and the precise planting structure. There are 48 kinds of plants, with Zoysia japonica area (28.84%), Prunus yedoensis (8.0%), Pinus thunbergii (6.73%) and Zelkova serrata (6.38%) taking up the majority. 27 places were chosen for researching the precise planting structure. The research shows that the average green coverage ratio is 38.14% and the average green capacity coefficient is $0.72m^3/m^2$. The growth defective rate of trees in the shade areas is estimated by averaging the classified growth conditions of individual trees per block of shade areas. Areas with an inferior environment for growth and low spatial usage in Okgu Park are selected as subjects for planting design. After comparing the spatial functions with planting concepts and analyzing the growth of plants, I identify $36,236m^2$ areas with inferior growth condition. I also examine structures and the surrounding areas to find areas that require urgent planting improvement, specifically identifying landscape space and shade space around the fountain and the buffer space nearby the North gate. I rearrange spatial functions in the selected areas to devise a planting design considering the existing vegetation, layer structure, and its usage. I set the planting concept and direction to improve the landscape of the selected areas through implementing a planting design so the park users can be satisfied with each space.