• Title/Summary/Keyword: 잔골재분

Search Result 22, Processing Time 0.022 seconds

The Influence of Fine Particles under 0.08 mm Contained in Aggregate on the Characteristics of Concrete (골재 중 0.08 mm 이하 미립분의 종류가 콘크리트의 특성에 미치는 영향)

  • Song, Jin-Woo;Choi, Jae-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.347-354
    • /
    • 2013
  • Recently, crushed fine aggregates are being widely used due to the shortage of natural sand. In Korea, the amount of fine particles under 0.08 mm contained in crushed fine aggregates is restricted to be less than 7%, which is similar to the regulations of ASTM but is still very strict compared to the regulations of the other nations. In addition, the crushed aggregates already have in them about 20% of fine particles under 0.08 mm which occurs while they are crushed. The fine particles are not easy to wash out, and also to maximize the use of resources it is deemed necessary to review the possibility of enhancing the limit of the amount of fine particles. Therefore, this study conducted experiments to analyze the characteristics of fine particles under 0.08mm and their influence on the properties of concrete. Experiments using silt and cohesive soil were also done for comparison. In the experiments on fine particles, the methylene blue value was more in the soil dust contained in silt and cohesive soil than in the stone powder contained in crushed fine aggregates. Also, the methylene blue value had a close correlation with packing density and liquid & plastic limit. In the experiments done with concrete, the quantity of high range water reducing agent demanded to obtain the same slump increased as the fine particle substitution rate heightened. However, in the experiment which used stone powder testing the compressive strength and tensile strength of concrete in the same water-cement ratio, there was little change in strength with less than 20% addition of fine particles among the fine aggregates, and no meaningful difference in the amount of drying shrinkage of concrete.

Optimum Abrasing Condition for Recycled Fine Aggregate Produced by Low Speed Wet Abraser Using Sulfur (황산수를 사용한 저속 습식 마쇄법에 의한 순환잔골재의 최적 마쇄조건)

  • Kim, Jin-Man;Kim, Ha-Seog;Park, Sun-Gyu;Kim, Bong-Ju;Kwak, Eun-Gu
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.557-563
    • /
    • 2008
  • Recently, the amount of disposed construction materials like demolished concrete is growing fast and the shortage of natural concrete aggregate is becoming serious. Therefore, recycling of aggregate extracted from the demolished concrete is getting important and use of the recycled aggregate for concrete has been seriously considered. However, the use of the recycled aggregate even for low performance concrete is very limited because recycled aggregate which contains large amount of old mortar has very low quality. Therefore, removing the paste sticked to the recycled aggregate is very important in the manufacturing of high quality recycled aggregate. We have studied a series of research according to complex crushing method, which is removed the ingredient of cement paste from recycled fine aggregate using both the low speed wet abrasion crusher as mechanical process and the acid treatment as chemical processes. This paper is to analyze the quality of the recycled fine aggregate produced by those complex method and investigate optimum manufacturing condition for recycled fine aggregate by the design of experiments. The experimental parameters considered are water ratio, coase aggregate ratio, and abrasion time. As a result, data concerning the properties of recycled sand were obtained. It was found that high quality recycled fine aggregate could be to obtain at the condition of the fifteen minute of abrasion-crusher time and the over 1.0 of recycled coarse aggregate ratio.

Spalling Reduction Method of High-Strength Reinforced Concrete Columns Using Insulating Mortar (단열모르타르를 이용한 고강도콘크리트 기둥의 폭렬저감 방안)

  • Yoo, Suk-Hyeong;Lim, Seo-Hyeong
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.8-13
    • /
    • 2011
  • High Strength Concrete (HSC) has a disadvantage of the brittle failure under fire due to the spalling. The studies on spalling control method of new constructed HSC buildings were performed enough, but the studies on existing buildings are insufficient. The new inorganic refractory mortar is developed in this study. The insulating capacity is enhanced by using light weight fine aggregate and polypropylene (PP) fiber. In results of material test, the thermal conductivity of light weight fine aggregate get lower than general fine aggregate. And in results of column test, the fire resisting time is delayed 20 minutes by using light weight fine aggregate, 10 minutes by increasing finishing depth from 10 mm to 20 mm and 4 minutes by using 0.6 % PP fiber.

Effects of Aggregate Grading on the Performance of High-Flowing Concrete with General Strength (일반 강도용 고유동 콘크리트에서의 골재 입도 영향)

  • Kim, Sang Chel;Kim, Yun Tae;Shin, Dong Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.63-72
    • /
    • 2012
  • The high-flowing concrete requires additionally or excessively more expensive admixture than conventional concrete. So, the concrete has not to be widely used in practical field due to the increase of production price, need of additional facilities, and excessive development of concrete strength in associate with addition of too much cementitious material even though it has more significant advantages than conventional concrete. Thus, this study aims at developing high-flowing concrete with general strength unlike high strength which has been carried out in conventional study. To observe the role of aggregate in the concrete quantitatively and to increase the performance of high-flowing concrete effectively, parametric studies were carried out such as W/C, s/a, fineness modulus of aggregate, contribution degree of particle sizes, and the effect of 13mm aggregate and fine stone powder as a partial replacement of aggregates. And the effect of these factors on performance of the concrete was evaluated by measuring slump-flow and gap of penetration height in U-typed instrument. As a result, it was found that flowability of high-flowing concrete depends upon grading of fine aggregate more significantly than that of coarse aggregate and is enhanced greatly as fineness modulus of fine aggregate decreases and the value of s/a increases. In addition, the application of 13mm aggregate and fine stone powder are expected as a partial replacement of aggregate in order to increase the performance of high-flowing concrete more effectively.

Study on the Properties of Light-weight Concrete containing Bottom Ash as a part of Fine Aggregate (바텀애시를 잔골재로 사용한 경량콘크리트의 특성에 관한 연구)

  • Lee, Jin-Woo;Kwon, Hae-Won;Park, Hee-Gon;Kim, Yoo-Jin;Bae, Yeoun-Ki;Lee, Jae-Sam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.701-704
    • /
    • 2008
  • Actuality, amount of electric power is rising together with business expansion. But the most power plant is consisted a thermal power. People have been burning fuel like a coal, and it bring the cinder concrete. Fly-ash is use to the high-degree in construction material, but in case of bottom-ash had been disused the whole quantity. Intermittently, the academic world laid his studies for bottom-ash. Thus, this study contents are a characteristic of be not harden concrete incorporating fine aggregate, a strength of harden concrete, elastic modulus and a unit mass. And there do for the sake to examine utility value of bottom-ash and improve of light weight concrete.

  • PDF

Strength and Absorption Properties of Cement Mortar Produced with Various Content of Sludge Powder at Mines (석산에서 발생하는 슬러지 미립분의 혼입률 변화에 따른 시멘트 모르타르의 강도 및 흡수 특성)

  • 한천구;신병철;김기철;이상태
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.561-567
    • /
    • 2001
  • It is reported that a lot of sludge powder is produced during the process of manufacturing crushed fine aggregate in mines. However, there is a limitation on the its use that most of them are disposed and wasted, which cause environmental pollution. Therefore, in this paper, tests are carried out in order to recycle sludge powder as filler for cement mortar products. Kinds of aggregates and mix proportion of mortar are varied under various contents of sludge powder. According to test results, it is found that cement mortar products using sludge powder as substitution of fine aggregate about 10% have better qualities than those without sludge powder.

Effect of Fine Content of the Fine Aggregate is on the Quality of the Cement Mortar (잔골재의 미립분 함유량이 시멘트 모르타르의 품질에 미치는 영향)

  • Kim, Min-Sang;Park, Yong-Jun;Jo, Man-Ki;Kim, Young-Tae;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.121-122
    • /
    • 2016
  • Recently in the domestic construction industry, source depletion has resulted in instances of ready-mixed concrete companies using river sand or crushed sand with high fine particle content. But the use of such low-quality fine aggregate is known to cause concrete quality to decline and have negative effects. So this study analyzed how much of an impact changes in fine particle content have on cement mortar's engineering characteristics. As a result, the flow rate and air quantity, which are characteristics of unhardened mortar, were shown to decrease as fine particle content increased, and compression strength, a characteristic of light mortar, was shown to subtly increase as fine particle content decreased.

  • PDF

Evaluation of Mechanical Properties of Early-age Concrete Containing Electric Arc Furnace Oxidizing Slag (전기로 산화슬래그를 혼입한 초기재령 콘크리트의 역학적 특성 평가)

  • Kwon, Seung-Jun;Hwang, Sang-Hyeon;Lim, Hee-Seob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.93-100
    • /
    • 2019
  • In this study, the mechanical properties of early-age concrete were evaluated by mixing the electric arc furnace oxidizing slag fine aggregate with 30% and 50% replacement ratio. Slump test, air content test and unit volume weight test were performed for fresh concrete, and compressive strength test and chloride penetration experiments were carried out in hardened concrete. The compressive strength increased up to 7 days of curing age with increasing replacement ratio of the electric furnace oxidizing slag, but the strength decreased to 90% level of OPC concrete at 28 days of age. Regarding the result of chloride penetration test, no significant differences from OPC concrete were evaluated, which shows a feasibility of application to concrete aggregate.

Aggregate Utilization Estimation of River Sand according to Typical Location of Main Stream of Nakdong-River (낙동강 본류의 대표위치별 하천모래의 골재 활용성 평가)

  • Park, Jae-Im;Bae, Su-Ho;Kwon, Soon-Oh;Kim, Chang-Duk;Lee, Seung-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3719-3725
    • /
    • 2012
  • Due to the recent shortage of well-graded river sand resulting from a rapid growth of concrete construction, sea sand, crushed sand, and etc. are increasingly used instead. It is, however, well noted that non-washed sea sand leads to corrosion of the reinforcing steel in concrete, and thus eventually results in damage to concrete. Also, the crushed sand is not being widely used, since it is difficult to maintain the allowable amount of passing 0.08mm sieve and to adjust grading. On the other hand, because the fine sand of Nakdong-River has a poor grading but good quality as a fine aggregate for concrete, it is strongly needed to investigate the fine sand as an alternative fine aggregate. Thus, the purpose of this research is to evaluate the physical properties of the fine sand of Nakdong-River to utilize it actively as a fine aggregate. For this purpose, after the sand samples were collected according to typical location of main stream of Nakdong-River, the physical properties such as density in oven-dry condition, grading, unit volume mass, and etc. of them were estimated. It was observed from the test results that physical properties of the fine sand of Nakdong-River except grading were found to be excellent.

Analyzing the Engineering Properties of Cement Mortar using Raw Coal Ash as a Microfines for the Mixed Aggregate (미정제 석탄회를 혼합골재의 미립분 보충재로 활용하는 시멘트 모르타르의 공학적 특성 분석)

  • Han, Cheon-Goo;Park, Byung-Moon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.219-225
    • /
    • 2018
  • The aim of the research is improving the quality of concrete by using the alternative aggregate resources and recycling wastes. To make a combined aggregate fitted in standard particle size distribution curve, crushed sand from blasted rock debris was used as a base aggregate. Additionally, to increase the portion of fine particles, sea sand was mixed. Although these aggregate combination fit the standard particle size distribution curve, in this research, raw coal ash was replaced as a microfine. According to the experiment, by replacing 5% raw coal ash, the most favorable results were achieved in aggregate gradation and cement mortar quality.