• Title/Summary/Keyword: 작전운용성능

Search Result 45, Processing Time 0.025 seconds

A Study on the Anti-Corrosion Paint(EH 2350) Compatibility Verification for Naval Surface Vessels's Cavitation (캐비테이션 발생에 따른 해군 수상함정 방청도료(EH 2350) 적합성 검증에 관한 연구)

  • Choi, Sang-Min;Lee, Ji-Hyeog;Beak, Yong-Kawn;Jeong, Hyeon-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.7-12
    • /
    • 2019
  • The naval surface vessels, which were often exposed to harsh marine environment, tended to be corrosive due to military operations on various sea-areas and courses. Although R.O.K Navy applied various methods to protect further corrosion, the hull corrosion occurred due to cavitation were found on the naval surface vessels at regular and occasional docking. Hull corrosion was a critical factor directly to affect the lifetime of ships and their operational capabilities adversely. In this paper, EH 2350, which was the main anticorrosion paint used by R.O.K. Navy, was compared with DuraTough DL by used by the U.S Navy to collect materials related to anti-corrosion paint. In addition, the paint compatibility verification was conducted through wear abrasion test. Assuming that it was exposed to sea-environment various both abrasion cycle and weight for objective verification. by varying both the abrasion cycles and weights. In this study, the reliability of the EH 2350 conformity, which was used in Naval surface vessels, was secured.

Effect Analysis of WBS-Based Technology Research and Analysis Methodology for Defense Technology Planning : With 'A' Missile System (국방기술기획을 위한 WBS 기반 기술 조사·분석 방법론의 효과분석 : 'A' 미사일 무기체계 중심으로)

  • Kim, Mi Seon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.211-217
    • /
    • 2020
  • Technology planning in the defense field aims to develop core technologies in order to develop weapon systems to satisfy the force integration period by researching and analyzing necessary technologies for weapon systems. In the past, core technology development projects were conducted by deriving core technology based on the main required operational capability. But in this case, there is the limitation that technologies which are necessary to develop weapon systems but do not directly affect required operational capability, such as system integration technologies, are not considered. In this paper, we propose a work breakdown structure-based technology research and analysis methodology that prevents vacant technologies by identifying core technologies that must be secured for the development of weapon systems at the component level. With the proposed methodology, it is possible to identify technologies that must be acquired to realize the required operational capability of systems or which must be secured even they do not affect the required operational capability.

A Study on Target Recognition with SAR Image using Support Vector Machine based on Principal Component Analysis (PCA 기반의 SVM을 이용한 SAR 이미지의 표적 인식에 관한 연구)

  • Jang, Hayoung;Lee, Yillbyung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.434-437
    • /
    • 2011
  • 차세대 지능적 무기체계의 자동화를 목표로 SAR(Synthetic Aperture Radar) 영상 신호를 이용한 표적 인식률 향상을 위한 여러가지 방법들이 제안되어 왔다. 기존의 연구들은 SAR 영상의 고차원 특징을 그대로 사용했기 때문에 표적 인식의 성능저하가 있었다. 본 연구에서는 정보 획득 거리가 길고, 날씨에 제약이 없이 전천후 작전 운용이 가능하도록 레이더의 특징과 고해상도 영상을 결합한 SAR 이미지를 이용한 표적 인식률 향상 방법을 제안한다. 효과적인 표적 인식을 하기위해 고차원의 특징벡터를 저차원의 특징벡터로 축소하는 PCA(Principal Component Analysis)를 기반으로 하는 SVM(Support Vector Machine)을 사용한 표적 인식 기법을 사용하였고, PCA 기반의 SVM 분류기를 이용한 표적 인식이 SVM 만을 사용한 표적 인식보다 향상된 성능을 보인 것을 확인하였다.

Modeling and Analysis of Cooperative Engagements with Manned-Unmanned Ground Combat Systems (무인 지상 전투 체계의 협동 교전 모델링 및 분석)

  • Han, Sang Woo;Pyun, Jai Jeong
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.2
    • /
    • pp.105-117
    • /
    • 2020
  • Analysis of combat effectiveness is required to consider the concept of tactical cooperative engagement between manned-unmanned weapon systems, in order to predict the required operational capabilities of future weapon systems that meets the concept of 'effect-based synchronized operations.' However, analytical methods such as mathematical and statistical models make it difficult to analyze the effects of complex systems under nonlinear warfare. In this paper, we propose a combat simulation model that can simulate the concept of cooperative engagement between manned-unmanned combat entities based on wireless communications. First, we model unmanned combat entities, e.g., unmanned ground vehicles and drones, and manned combat entities, e.g., combatants and artillery, considering the capabilities required by the future ground system. We also simulate tactical behavior in which all entities perform their mission while sharing battlefield situation information through wireless communications. Finally we explore the feasibility of the proposed model by analyzing combat effectiveness such as target acquisition rate, remote control success rate, reconnaissance lead time, survival rate, and enemy's loss rate under a small-unit armor reconnaissance scenario. The proposed model is expected to be used in war-game combat experiments as well as analysis of the effects of manned-unmanned ground weapons.

Optimal depth for dipping sonar system using optimization algorithm (최적화 알고리즘을 적용한 디핑소나 최적심도 산출)

  • An, Sangkyum
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.541-548
    • /
    • 2020
  • To overcome the disadvantage of hull mounted sonar, many countries operate dipping sonar system for helicopter. Although limited in performance, this system has the advantage of ensuring the survivability of the surface ship and improving the detection performance by adjusting the depth according to the ocean environment. In this paper, a method to calculate the optimal depth of the dipping sonar for helicopters is proposed by applying an optimization algorithm. In addition, in order to evaluate the performance of the sonar, the Sonar Performance Function (SPF) is defined to consider the ocean environment, the depth of the target and the depth of the dipping sonar. In order to reduce the calculation time, the optimal depth is calculated by applying Simulated Annealing (SA), one of the optimization algorithms. For the verification of accuracy, the optimal depth calculated by applying the optimization technique is compared with the calculation of the SPF. This paper also provides the results of calculation of optimal depth for ocean environment in the East sea.

Development of C2 Virtual Linked Simulator For Engineering and Engagement Level Battle Experimentation (공학-교전급 전투실험을 위한 C2 가상모의 연동 시뮬레이터 개발)

  • Lee, Sangtae;Lee, Seungyoung;Hwang, Kun-Chul;Kim, Saehwan;Lee, Kyuhyun
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.4
    • /
    • pp.11-19
    • /
    • 2013
  • The Korean naval weapon systems, combat experiments establish the concept of Battle operations, and create the future of the new weapons system. Doctrine development and training as well as ranging from experiments for evaluate the performance of mission operations for combat experiments are used. The battle lab is effectively support tool for the Korean Naval battle experiments. The battle lab is through a dedicated testing facility and to build efficient and effective simulation-based acquisition supporting environment. In this paper, the ship / submarines C2 operations virtual simulator was developed to support the concept of Battle operations of naval combat experiments in training and tactical development. The ship C2 operations virtual simulator makes the anti-ship and anti-aircraft the engagement scenario for performed experiments using the SADM. The submarines C2 operations virtual simulator makes the anti-submarine engagement scenario for performed experiments using EAS. EAS System was created before reuse. EAS system by modifying the additional interfaces HLA-RTI has been reused. Reflected in the tactics and training after analysis of the results through the battle experiment. Also increase training fidelity through operator involvement. The anti-ship and anti-aircraft system architecture (SADM) and anti-submarine system architecture (EAS) requires unique design of system framework since two separate architectures should be integrated into a system. An C2 virtual linked architecture was used to integrate different system architecture. A C2 virtual linked software framework, designed that have integrated protocol for battle experimental linkage and battlefield visualization environment.

An Enhanced Data Communication Protocol based on HF Radios for supporting Naval Operations (해상작전 지원을 위한 HF 무전기 기반 개선된 데이터 통신 프로토콜)

  • Lee, Seung Gu;Kang, Seung Nam;Lee, Soon Bok;So, Eul-Deuk;Lim, Jae Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1990-1998
    • /
    • 2017
  • The success of naval operation prioritizes the implementation of a robust communication network that delivers accurate and prompt communications to one another. The satellite, which is the main communication network of the military, is required to construct a preliminary communication network because of the enemy radio disturbance and weak point of fixed antenna. The military operational communication network has been in transition from voice-centered wireless communication network to text message-based communication network. In this paper we suggest an enhanced communication method built on Roll Call, the main communication method of ROK Navy operating tactical data link called Link-11. Simulation results display that the proposed method reduces the transmission time per unit frame by 4.3 times compared to the Roll Call and 6.3 times compared with the Round Robin & Broadcasting; it is also proved that the higher the direct reception rate, the shorter the transmission time required by 1.6 times maximum.

An Analysis of Haeseong Guided Missile Launcher Reliability Using Naval Field Data (야전운용자료를 활용한 해성 유도무기 발사체계 신뢰도 분석)

  • Hur, Jangwan;Oh, Kyungwon
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.3
    • /
    • pp.39-46
    • /
    • 2017
  • Required military demands for high reliability of weapons systems throughout stages of life cycles as high technologies combined with weapons systems, research and development continue to drive costs upwards. However, for studies on reliability of national defense weapons systems, empirical research is limited because of a lack of interest or limitations relative to data collection. This study proposes a collection process relative to field operating specifications, based on data relative to experience and management collected by visiting vessels onsite, that operate weapons systems. In addition, after drawing the operating MTBF of the launching system for the Haeseong guided missile launcher, this study compared and analyzed that with values predicted during development and identifies parts with low operating values as compared to predicted values. Results of this study relative to maintenance support troops and weapon systems development companies will contribute to maintaining operational deployment of the launching system of the Haeseong guided weapons system.

A Methodology for Evaluating Mission Suitability of Manned-Unmanned Aircraft Teaming for SEAD Missions (SEAD 임무 수행을 위한 유x무인기 협업 체계의 임무적합도 평가 방법론 연구)

  • Seo, Wonik;Lee, Hyun Moo;Kim, Jeong-Hun;Choi, Keeyoung;Jee, Cheol-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.11
    • /
    • pp.935-943
    • /
    • 2020
  • This paper presents a methodology for evaluating suitability of a manned-unmanned aerial vehicle team for a complicated mission. The study identified vehicle performance, equipment performance and level of autonomy as the key factors that affect the mission effectiveness. A manned and an unmanned aircraft were compared, and their performance was quantized in these respects. SEAD was chosen as a representative manned-unmanned team mission. The SEAD mission was broken down to a sequence of tasks. Mission experts evaluated the importance of each mark item for the mission legs. Combining the results showed proper type of aircraft for each leg depending on the complexity, safety, and importance of the task. Finally, the whole mission plan was laid out as a time-based sequence which alleviate pilot workload significantly.

North Korea's Nuclear Strategy and SLBM Development (북한 SLBM 개발과 핵전략 : 해군력 건설 방향과 한미 해군협력)

  • Oh, Soon-Kun
    • Strategy21
    • /
    • s.41
    • /
    • pp.333-370
    • /
    • 2017
  • 북한의 SLBM 위협이 대한민국 안보에 미치는 영향에 대해 그동안 많은 논의가 있어 왔지만, 북의 잠수함에서 발사하는 탄도미사일이 보유한 진정한 위협에 대한 인식은 아직도 부족한 듯하다. 그 이유는 대부분의 논의가 북 SLBM 기술의 성숙도와 완성시기 등 기술적 수준에 관심이 치우쳐져 있기 때문이다. 핵전략과 억제전략의 관점에서 본다면 북한의 SLBM 개발은 한미동맹의 제1격에 대한 완벽한 제2격 능력 보유에 그 핵심이 있다. 즉 향후 개발될 북한의 SLBM은 평양 김정은 정권의 생존을 보장할 직접적이고 핵심적인 전력이 될 것이다. 이는 궁극적으로 한미 군사동맹과 북한의 현 군사력 균형을 깨뜨리고 앞으로 북의 군사도발 가능성을 더욱 높이는 결과를 가지고 올 것이다. 북의 핵전략은 현재 확증보복(assured retaliation) 단계로 발전하고 있으며, 결국에는 전쟁에 사용될 전술적 핵무기 능력(war-fighting capability)을 갖게 될 것이다. 이에 대한민국 해군은 우리의 강점을 활용하여 적의 약점을 공략할 수 있는 상쇄전략(offset strategy)을 개발하여야 한다. 북한의 현 제한된 잠수함 기술력과 대잠작전 능력을 고려할 때 한국해군은 수중영역에서의 공세적 대잠전(offensive ASW) 개념을 보다 발전시켜야만 할 것이다. 이는 미 해군이 냉전기간 중 소련해군 핵추진전략잠수함(SSBN) 대응을 위해 발전시킨 전략대잠전(strategic ASW) 개념에서 교훈을 얻을 수 있다. 미 해군은 소련 해군의 SSBN 을 억제하기 위해 공세적인 전략대잠전을 수행했고 그 결과 소련해군은 자국의 연안에서 벗어나지 못하는 요새전략(bastion strategy)를 추구할 수밖에 없었다. 당시 미 해군의 전략대잠전은 공격잠수함(SSN), 대잠초계기, 수중 탐지체계(SOSUS), 공격기뢰 등의 전력으로 구성되었다. 따라서 북한 SLBM 에 대한 한국해군의 전략개념은 북의 핵전략(제 2 격능력)을 억제하는 방향으로 정립되어야 하며, 이를 위한 해군력 건설은 대잠전 능력 강화에 초점을 맞추어야 한다. 우리 해군은 장기적으로 핵추진잠수함을 비롯하여 성능이 향상된 대잠초계기, 한반도 해역을 중심으로 한 미 해군의 SOSUS 와 유사한 수중탐지장비 그리고 장시간 수중작전이 가능한 무인잠수정(UUV)을 도입해야만 한다. 단기적으로는 현재 추진되고 있는KAMD 체계에 SM-3 를 보유한 이지스함을 포함시켜, 북 SLBM 에 대한 요격능력을 강화해야 할 것이다. 한미동맹은 북 핵전략의 핵심전력인 SLBM 개발에 대한 위협인식을 공유해야만 하다. 작전적 수준에서는 양국 해군 간 대잠전 및 대유도탄전 작전운용성 증대에 우선순위를 두고, 기존의 한미 간 연합작전능력 강화뿐 아니라 위기시를 대비하여 미일 간 구축되어 있는 대잠전 및 대유도탄전 능력도 활용할 필요가 있을 것이다.