• Title/Summary/Keyword: 작용응력 예측

Search Result 196, Processing Time 0.025 seconds

Characteristics of Bentonite Filter Cake on Vertical Cutoff Walls Evaluated by Modified Fluid Loss Test (수정 fluid loss 시험을 이용한 연직 차수벽에 생성된 벤토나이트 필터케익 특성 평가)

  • Nguyen, The-Bao;Park, Moon-Seo;Lim, Jee-Hee;Choi, Hang-Seok;Han, Shin-In
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.2
    • /
    • pp.53-62
    • /
    • 2011
  • During the construction of vertical cutoff walls, filtration of bentonite slurry into the adjacent soil formation fabricates a layer of bentonite filter cake on the wall surface. The bentonite filter cake possesses much lower hydraulic conductivity compared to that of backfill materials in the cutoff wall. Hydraulic conductivity of bentonite filter cakes formed with three different types of bentonites has been measured by performing the modified fluid loss test under various pressure levels. Three different mixture ratios, 4, 6, and 8%, were selected for fabricating bentonite filter cakes to represent common field conditions. Two analysis methods for interpreting the experimental data from the modified fluid loss tests were employed to estimate hydraulic conductivity of the bentonite cakes. The range of hydraulic conductivities of the three bentonite cakes is between $2.15{\times}10^{-11}\;m/s$ and $2.88{\times}10^{-10}\;m/s$ which is 1 to 2.7 orders of magnitude lower than that of the design cutoff wall backfill. The stress distribution and thickness of the bentonite cakes were also evaluated in this paper.

Splice Strengths of Noncontact Lap Splices Using Strut-and-Tie Model (스트럿-타이 모델을 이용한 비접촉 겹침 이음의 이음 강도 산정)

  • Hong, Sung-Gul;Chun, Sung-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.199-207
    • /
    • 2007
  • Strut-and-tie models for noncontact lap splices are presented and parameters affecting the effective lap length $(l_p)$ and the splice strength are discussed in this paper. The effective lap length along which bond stress is developed is shorter than the whole lap length. The effective lap length depends on the transverse reinforcement ratio $({\Phi})$ and the ratio of spacing to lap length $({\alpha})$. As the splice-bar spacing becomes wider, the effective lap length decreases and, therefore, the splice strength decreases. The influence of the ratio ${\alpha}$ on the effective lap length becomes more effective when the transverse reinforcement ratio is low. Because the slope of the strut developed between splice-bars becomes steeper as the ratio ${\Phi}$ becomes lower, the splice-bar spacing significantly affects the effective lap length. The proposed strut-and-tie models for noncontact lap splices are capable of considering material and geometric properties and, hence, providing the optimal design for detailing of reinforcements. The proposed strut-and-tie model can explain the experimental results including cracking patterns and the influence of transverse reinforcements on the splice strength reported in the literature. From the comparison with the test results of 25 specimens, the model can predict the splice strengths with 11.1% of coefficient of variation.

Influence of Antecedent Rainfall in Stability Analysis of Unsaturated Soil Slope (불포화토 사면 안정해석에서 선행강우의 영향에 관한 연구)

  • Lee, Yeongsaeng;Yoon, Seunghyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1073-1082
    • /
    • 2015
  • The behavior of the unsaturated soil slope can be influenced by the various factors such as the hydraulic characteristics, the mechanical characteristics, the coefficient of conductivity, the stratifications, the rainfall conditions i.e. the rainfall intensity, the rainfall pattern, the duration time of the rainfall and the antecedent rainfall etc. It is known that the slope failure is influenced greatly by the antecedent rainfall rather than the rainfall condition at the failure time, so the antecedent rainfall is supposed to be a very important factor in slope stability analysis among these factors. To predict and to prevent the slope failure by the rainfall, the distribution of the matric suction by the antecedent rainfall must be considered first of all and the slope stability analysis should be carried out by considering the successive rainfall characteristics. In this research, 3 samples with different quantity (5%, 10%, 20%) of silts were prepared and the SWCC (Soil-water characteristic curve) tests were carried out and the associated parameters were analyzed. After analyzing the distribution of the matric suction and the change of the mechanical characteristics such as the stress and the strength when applying the antecedent rainfall for one month and the successive intensive rainfall for 12 hours, the slope stability analyses were carried out numerically. And the influence of the antecedent rainfall for one month and the SWCC on the stability of a slope were compared and analyzed.

Numerical Simulation of Full-Scale Crash Impact Test for Fuel Cell of Rotorcraft (회전익항공기 연료셀 충돌충격시험 Full-Scale 수치모사)

  • Kim, Hyun-Gi;Kim, Sung Chan;Kim, Sung Jun;Kim, Soo Yeon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.5
    • /
    • pp.343-349
    • /
    • 2013
  • Crashworthy fuel cells have a great influence on improving the survivability of crews. Since 1960's, the US army has developed a detailed military specification, MIL-DTL-27422, defining the performance requirements for rotorcraft fuel cells. In the qualification tests required by MIL-DTL-27422, the crash impact test should be conducted to verify the crashworthiness of fuel cell. Success of the crash impact test means the improvement of survivability of crews by preventing post-crash fire. But, there is a big risk of failure due to huge external load in the crash impact test. Because the crash impact test itself takes a long-term preparation efforts together with costly fuel cell specimens, the failure of crash impact test can result in serious delay of a entire rotorcraft development. Thus, the numerical simulations of the crash impact test has been required at the early design stage to minimize the possibility of trial-and-error with full-scale fuel cells. Present study performs the numerical simulation using SPH(smoothed particle hydro-dynamic) method supported by a crash simulation software, LS-DYNA. Test condition of MIL-DTL-27422 is reflected on analysis and material data is acquired by specimen test of fuel cell material. As a result, the resulting equivalent stresses of fuel cell itself are calculated and vulnerable areas are also evaluated.

Comparison of Liquefaction Assessment Results with regard to Geotechnical Information DB Construction Method for Geostatistical Analyses (지반 보간을 위한 지반정보DB 구축 방법에 따른 액상화 평가 결과 비교)

  • Kang, Byeong-Ju;Hwang, Bum-Sik;Bang, Tea-Wan;Cho, Wan-Jei
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.4
    • /
    • pp.59-70
    • /
    • 2022
  • There is a growing interest in evaluating earthquake damage and determining disaster prevention measures due to the magnitude 5.8 earthquake in Pohang, Korea. Since the liquefaction phenomena occurred extensively in the residential area as a result of the earthquake, there was a demand for research on liquefaction phenomenon evaluation and liquefaction disaster prediction. Liquefaction is defined as a phenomenon where the strength of the ground is completely lost due to a sudden increase in excess pore water pressure caused due to large dynamic stress, such as an earthquake, acting on loose sand particles in a short period of time. The liquefaction potential index, which can identify the occurrence of liquefaction and predict the risk of liquefaction in a targeted area, can be used to create a liquefaction hazard map. However, since liquefaction assessment using existing field testing is predicated on a single borehole liquefaction assessment, there has been a representative issue for the whole targeted area. Spatial interpolation and geographic information systems can help to solve this issue to some extent. Therefore, in order to solve the representative problem of geotechnical information, this research uses the kriging method, one of the geostatistical spatial interpolation techniques, and constructs a geotechnical information database for liquefaction and spatial interpolation. Additionally, the liquefaction hazard map was created for each return period using the constructed geotechnical information database. Cross validation was used to confirm the accuracy of this liquefaction hazard map.

Poly(vinyl alcohol)의 합성과 유변학적 성질

  • Lee, Jeong Kyung;Lee, Hyang Aee;Kim, Keyn Gyi
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.6
    • /
    • pp.555-561
    • /
    • 2001
  • Vinyl acetate usually used in PVA resin preparation was converted to PVAc by bulk polymerization using AIBN as a initiator and PVA was synthesized by changing the concentration of NaOH added for saponification subsequently. As a result of estimating molecular weight using GPC, molecular weight increased as the NaOH concentration increased to 2.5 N, 5.0 N, 7.5 N and 10.0 N and polydispersity had similar values of 2.1~2.3, however, showed slightly decreasing tendency. In addition, PVA saponificated by 10.0 N-NaOH showed high syndiotacticity in observation of tacticity using NMR spectroscopy. From this fact, the degree of tacticity was predicted to be high and it was in good agreement with the tendency of polydispersity by GPC. Also, from the result of FT-IR spectroscopy, it might be known that hydrolysis was more promoted in the PVA with 10.0 N-NaOH than other NaOH concentration. Intrinsic viscosity measured using Ubbelohde viscometer, which increased as the concentration of NaOH added for saponification increased. The change of shear strength with the change of shear rate was investigated using Brookfield viscometer, in consequence, viscosity of PVA synthesized decreased as shear rate increased. PVA solution confirmed to show the shear thining behavior by Casson plot and PVA with 10.0 N-NaOH had the largest yield value. DSC measurement was performed to know the thermal properties of PVA. Tp had nearly constant value of 214$^{\circ}C$ in all cases except for adding 2.5 N-NaOH and $\Delta$H was increased as the concentration of NaOH increased. From this properties, it was concluded that the degree of hydrogen bonding was proportional to the added concentration of NaOH and the increase of the degree of hydrogen bonding and hydrophobic interaction could affect the rheological and thermal properties of title compound.

  • PDF