• Title/Summary/Keyword: 작업방사선량

Search Result 156, Processing Time 0.026 seconds

An Analysis of Radiation Field Characteristics for Estimating the Extremity Dose in Nuclear Power Plants (원전 종사자의 말단선량평가를 위한 고피폭 접촉 방사선장 특성분석)

  • Kim, Hee-Geun;Kong, Tae-Young
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.4
    • /
    • pp.176-183
    • /
    • 2009
  • Maintenance on the water chamber of steam generator during outage in nuclear power plants (NPPs) has a likelihood of high radiation exposure to whole body of workers even short time period due to the high radiation exposure rates. In particular, it is expected that hands would receive the highest radiation exposure because of its contact with radiation materials. In this study, characteristic analysis of inhomogeneous radiation fields for contact operations was conducted using thermoluminescent dosimeter (TLD) readouts from the application tests of two-dosimeter algorithm to Korean NPPs in 2004. It is regarded that inhomogeneous radiation fields for contact operations in NPPs are dominated by high energy photons. In addition, field tests for workers who participated in maintenance on the steam generator during outage at Ulchin NPPs in 2009 and pressure tube replacement at Wolsong NPPs in 2009 were conducted to analyze radiation fields and to estimate the extremity dose. As a result, radiation fields were dominated by high energy photons.

The Assessment of Exposure Dose of Radiation Workers for Decommissioning Waste in the Radioactive Waste Inspection Building of Low and Intermediate-Level Radioactive Waste Disposal Facility (경주 중·저준위방사성폐기물 처분시설의 방폐물검사건물에서 해체 방사성폐기물 대상 방사선작업종사자의 피폭선량 평가 및 작업조건 도출)

  • Kim, Rin-Ah;Dho, Ho-Seog;Kim, Tae-Man;Cho, Chun-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2_spc
    • /
    • pp.317-325
    • /
    • 2020
  • The Korea Radioactive Waste Agency plans to expand the storage capacity of radioactive waste by constructing a radioactive waste inspecting building to solve the problem of the lack of inspection space and drum-handling space in the radioactive waste receipt and storage building for the first-stage disposal facility. In this study, the exposure doses of radiation workers that handle new disposal containers for decommissioning waste in the storage areas of the radioactive waste inspecting building were calculated using the Monte Carlo N-particle transport code. The annual collective dose was calculated as a total of 84.8 man-mSv for 304 new disposal containers and an estimated annual 306 working hours for the radiation work. When the 304 new disposal containers (small/medium type) were stored in the storage areas, it was found that 25 radiation workers should be involved in acceptance/disposal inspection, and the estimated exposure dose per worker was calculated as an average annual value of 3.39 mSv. When the radiation workers handle the small containers in high-radiation dose areas, the small containers should be shielded further by increasing the concrete liner thickness to improve the work efficiency and radiation safety of the radiation workers. The results of this study will be useful in establishing the optimal radiation working conditions for radiation workers using the source term and characteristics of decommissioning waste based on actual measurements.

The Improvement Plan on Unifying from Law and Regulations Related to Radiation (방사선관계법 개정 시 용어 적용에 관한 개선 방안)

  • Jeong, Dong-Kyong;Lee, Jong-Back;Park, Myeong-Hwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.1
    • /
    • pp.7-12
    • /
    • 2006
  • Purpose: This is for the purpose to help the bill related to technologists be systematic and unitary by carefully analyzing a legislation, an enforcement ordinance, and enforcement regulations in the connection with the radiological worker and the radiation workers from the law and regulations related to technologists. Materials and Methods: Concerning technologists, a legislation, an enforcement ordinance, and enforcement regulations for a sort of medical technician, regarding the radiological worker, the rules of diagnosis radiation equipment safety management, and concerning the radiation workers, atomic energy law, an enforcement ordinance and enforcement regulations were gathered, compared with one another, and analyzed. Results: Among technologists, in the case of working in the department of diagnosis radiation, the title 'Radiological Worker' is used by the Medical Service Law, and in the case of working in the department of radiation tumors or the one of nucleus medicine, the title 'Radiation Workers' is used by the Atomic Energy Law. Conclusion: Besides the technical term that is used by characteristic tasks, unification of the terms that can be used in common is necessary for sure. And when a legislation, an enforcement ordinance, enforcement regulations, and notification, things like that in the radiation field are amended, certainly they should be done by mutual agreement through negotiation between the organization related to radiation and the governmental organization.

  • PDF

A Study on the Environmental Radiation Dose Measurement in the Nuclear Medicine Department (핵의학과에서 환경방사선량 측정에 대한 연구)

  • Kang, Bo-Sun;Lim, Chang-Seon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.2118-2123
    • /
    • 2010
  • Korean individual occupational exposure control is focused on the retrospective service to the over-exposed person by the reading of personal dosimeter. Since the radiophamaceuticals using in the nuclear medicine department are uncontained radiation sources, the potential exposure at working environment is very high. Moreover, a patient remains radioactive for hours or even days after the administration of a radiopharmaceutical for diagnosis or treatment. Thus, the proper working environmental exposure control must be established and executed to protect not only the affiliated employees, but also guardians accompanying patients and temporarily visiting public from the exposure by the patients. Japanese radiation protection law regulates working environmental radiation exposure by regularly measuring and filing the environmental dose for years. This study was aimed at measuring working environmental radiation dose in the nuclear medicine department of an university hospital located in Daejeon, Korea. We measured the accumulation radiation dose in air at 8 locations in the nuclear medicine department by using the same method as in Japan with glass dosimeters. The highest dose rate, 0.23 mSv per month, was measured at the waiting room, and the second one is at reception desk. Even though the doses were lower than the Korean constraint dose rate (0.3 mSv/week) at the boundary of the radiation controlled area, it was over the dose limit of public (1 mSv/y) and environment (0.25 mSv/y). Conclusionally, it was found that the new or additional procedure was necessary to less the exposure dose to the receptionist and guardians by the environmental radiation dose in the nuclear medicine department.

An Effects of Radiation Dose Assessment for Radiation Workers and the Member of Public from Main Radionuclides at Nuclear Power Plants (원전에서 발생하는 주요 방사성핵종들이 방사선작업종사자와 원전 주변주민의 피폭방사선량 평가에 미치는 영향)

  • Kim, Hee-Geun;Kong, Tae-Young;Jeong, Woo-Tae;Kim, Seok-Tae
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.1
    • /
    • pp.12-20
    • /
    • 2010
  • In a primary system at nuclear power plants (NPPs), various radionuclides including fission products and corrosion products are generated due to the complex water conditions. Particularly, $^3H,\;^{14}C,\;^{58}Co,\;^{60}Co,\;^{137}Cs,\;and^{131}I$ are important radionuclides in respect of dose assessment for radiation workers and management of radioactive effluents. In this paper, the dominant contributors of radiation exposure for radiation workers and the member of public adjacent to NPPs were reviewed and the process of dose assessment attributable to those contributors were introduced. Furthermore, the analysis for some examples of radiation exposure to radiation workers and the public during the NPP operation was carried out. This analysis included the notable precedents of internal radiation exposure and contamination of demineralized water occurred in Korean NPPs. Particularly, the potential issue about the dose assessment of tritium and carbon-14 was also reviewed in this paper.

Measuring external Radiation dose Ratio by Traits of Patients during Positron Emission Tomography(PET) (양전자단층촬영(PET)시 환자의 특성에 따른 외부 방사선량률 측정)

  • Cho, Yong-Gwi;Kim, Sung-Chul;Ahn, Sung-Min
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.12
    • /
    • pp.860-868
    • /
    • 2013
  • The purpose of this study is to ensure safety by measuring External radiation dose ratio (ERDR) by traits of patients in many ways after administering radiopharmaceutical($^{18}F$-FDG) for PET Torso scan, and to decrease ERDR of those to RI technologist, caretakers, and those who frequently exposed to radiation by arousing attention to radiation dose. Radiopharmaceutical was administered to 80 patients who conducted PET Torso from January to June, 2013. Radiation dose emitted from the patients was measured according to body shape(BMI), water hydration, height, amount of radiation administration. From the moment immediately after the radiopharmaceutical was administered, ERDR was measured by personal traits of patients. The radiation dose increased in proportion to the administered amount of the radiopharmaceutical, and there was no significant difference depending on the body shape of the patients. When water was supplied and the height was normal, the radiation dose was lower compared with the cases where water was not supplied and height was not normal. There is a need for making efforts to minimize the working time through sufficient education and mock training before those who RI technologist with sources of radiation for complying the radiation safety management rule. And they should minimize the ERDR by wearing a protective gear.