• 제목/요약/키워드: 자질 인식

검색결과 230건 처리시간 0.027초

자질 보강과 양방향 LSTM-CNN-CRF 기반의 한국어 개체명 인식 모델 (Bi-directional LSTM-CNN-CRF for Korean Named Entity Recognition System with Feature Augmentation)

  • 이동엽;유원희;임희석
    • 한국융합학회논문지
    • /
    • 제8권12호
    • /
    • pp.55-62
    • /
    • 2017
  • 개체명 인식(Named Entity Recognition) 시스템은 문서에서 인명(PS), 지명(LC), 단체명(OG)과 같은 개체명을 가지는 단어나 어구를 해당 개체명으로 인식하는 시스템이다. 개체명 인식을 하기위한 전통적인 연구방법으로는 hand-craft된 자질(feature)을 기반으로 모델을 학습하는 통계 기반의 모델이 있다. 최근에는 딥러닝 기반의 RNN(Recurrent Neural Networks), LSTM(Long-short Term Memory)과 같은 모델을 이용하여 문장을 표현하는 자질을 구성하고 이를 개체명 인식과 같이 순서 라벨링(sequence labeling) 문제 해결에 이용한 연구가 제안되었다. 본 연구에서는 한국어 개체명 인식 시스템의 성능 향상을 위해, end-to-end learning 방식이 가능한 딥러닝 기반의 모델에 미리 구축되어 있는 hand-craft된 자질이나 품사 태깅 정보 및 기구축 사전(lexicon) 정보를 추가로 활용하여 자질을 보강(augmentation)하는 방법을 제안한다. 실험 결과 본 논문에서 제안하는 방법에 따라 자질을 보강한 한국어 개체명 인식 시스템의 성능 향상을 확인하였다. 또한 본 연구의 결과를 한국어 자연어처리(NLP) 및 개체명 인식 시스템을 연구하는 연구자들과의 향후 협업 연구를 위해 github를 통해 공개하였다.

Word Embedding 자질을 이용한 한국어 개체명 인식 및 분류 (Korean Named Entity Recognition and Classification using Word Embedding Features)

  • 최윤수;차정원
    • 정보과학회 논문지
    • /
    • 제43권6호
    • /
    • pp.678-685
    • /
    • 2016
  • 한국어 개체명 인식에 다양한 연구가 있었지만, 영어 개체명 인식에 비해 자질이 부족한 문제를 가지고 있다. 본 논문에서는 한국어 개체명 인식의 자질 부족 문제를 해결하기 위해 word embedding 자질을 개체명 인식에 사용하는 방법을 제안한다. CBOW(Continuous Bag-of-Words) 모델을 이용하여 word vector를 생성하고, word vector로부터 K-means 알고리즘을 이용하여 군집 정보를 생성한다. word vector와 군집 정보를 word embedding 자질로써 CRFs(Conditional Random Fields)에 사용한다. 실험 결과 TV 도메인과 Sports 도메인, IT 도메인에서 기본 시스템보다 각각 1.17%, 0.61%, 1.19% 성능이 향상되었다. 또한 제안 방법이 다른 개체명 인식 및 분류 시스템보다 성능이 향상되는 것을 보여 그 효용성을 입증했다.

Bidirectional LSTM CRFs를 이용한 한국어 개체명 인식 (Named-entity Recognition Using Bidirectional LSTM CRFs)

  • 송치윤;양성민;강상우
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2017년도 제29회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.321-323
    • /
    • 2017
  • 개체명 인식은 문서 내에서 고유한 의미를 갖는 인명, 기관명, 지명, 시간, 날짜 등을 추출하여 그 종류를 결정하는것을 의미한다. Bidirectional LSTM CRFs 모델은 연속성을 갖는 데이터에 가장 적합한 RNN기반의 심층 학습모델로서 개체명 인식 연구에 가장 우수한 성능을 보여준다. 본 논문에서는 한국어 개체명 인식을 위하여 Bidirectional LSTM CRFs 모델을 사용하고, 입력 자질로 단어뿐만 아니라 품사 임베딩 모델과, 개체명 사전을 활용하여 입력 자질을 구성한다. 또한 입력 자질에 대한 벡터의 크기를 최적화 하여 기본 모델보다 성능이 향상되었음을 증명하였다.

  • PDF

Bidirectional LSTM CRFs를 이용한 한국어 개체명 인식 (Named-entity Recognition Using Bidirectional LSTM CRFs)

  • 송치윤;양성민;강상우
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
    • /
    • pp.321-323
    • /
    • 2017
  • 개체명 인식은 문서 내에서 고유한 의미를 갖는 인명, 기관명, 지명, 시간, 날짜 등을 추출하여 그 종류를 결정하는 것을 의미한다. Bidirectional LSTM CRFs 모델은 연속성을 갖는 데이터에 가장 적합한 RNN기반의 심층 학습모델로서 개체명 인식 연구에 가장 우수한 성능을 보여준다. 본 논문에서는 한국어 개체명 인식을 위하여 Bidirectional LSTM CRFs 모델을 사용하고, 입력 자질로 단어뿐만 아니라 품사 임베딩 모델과, 개체명 사전을 활용하여 입력 자질을 구성한다. 또한 입력 자질에 대한 벡터의 크기를 최적화 하여 기본 모델보다 성능이 향상되었음을 증명하였다.

  • PDF

상대적 가중치 자질을 반영한 CRF 기반의 개체명 인식 (Named Entity Recognition based on CRF reflecting relative weight)

  • 정진욱
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
    • /
    • pp.338-339
    • /
    • 2017
  • 본 논문은 개체명 인식을 위해 CRF 모델을 이용해 분류를 수행했다. 개체명 후보를 개체명으로 식별에서 중의성 문제가 필요하다. 본 논문에서는 이러한 중의성 문제 해결을 위해 학습 셋으로부터 패턴과 형태적 특성을 고려해 개체명 후보를 최대로 선택하고 선택된 개체명 후보의 중의성과 정확도를 높이기 위해 주변의 문맥 자질과 분별 확률 모델인 CRF를 이용해 중의성 문제를 해결한다.

  • PDF

Bi-directional LSTM-CNN-CRF를 이용한 한국어 개체명 인식 시스템 (Korean Entity Recognition System using Bi-directional LSTM-CNN-CRF)

  • 이동엽;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2017년도 제29회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.327-329
    • /
    • 2017
  • 개체명 인식(Named Entity Recognition) 시스템은 문서에서 인명(PS), 지명(LC), 단체명(OG)과 같은 개체명을 가지는 단어나 어구를 해당 개체명으로 인식하는 시스템이다. 개체명 인식 시스템을 개발하기 위해 딥러닝 기반의 워드 임베딩(word embedding) 자질과 문장의 형태적 특징 및 기구축 사전(lexicon) 기반의 자질 구성 방법을 제안하고, bi-directional LSTM, CNN, CRF과 같은 모델을 이용하여 구성된 자질을 학습하는 방법을 제안한다. 실험 데이터는 2017 국어 정보시스템 경진대회에서 제공한 2016klpNER 데이터를 이용하였다. 실험은 전체 4258 문장 중 학습 데이터 3406 문장, 검증 데이터 426 문장, 테스트 데이터 426 문장으로 데이터를 나누어 실험을 진행하였다. 실험 결과 본 연구에서 제안하는 모델은 BIO 태깅 방식의 개체 청크 단위 성능 평가 결과 98.9%의 테스트 정확도(test accuracy)와 89.4%의 f1-score를 나타냈다.

  • PDF

Bi-directional LSTM-CNN-CRF를 이용한 한국어 개체명 인식 시스템 (Korean Entity Recognition System using Bi-directional LSTM-CNN-CRF)

  • 이동엽;임희석
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
    • /
    • pp.327-329
    • /
    • 2017
  • 개체명 인식(Named Entity Recognition) 시스템은 문서에서 인명(PS), 지명(LC), 단체명(OG)과 같은 개체명을 가지는 단어나 어구를 해당 개체명으로 인식하는 시스템이다. 개체명 인식 시스템을 개발하기 위해 딥러닝 기반의 워드 임베딩(word embedding) 자질과 문장의 형태적 특징 및 기구축 사전(lexicon) 기반의 자질 구성 방법을 제안하고, bi-directional LSTM, CNN, CRF과 같은 모델을 이용하여 구성된 자질을 학습하는 방법을 제안한다. 실험 데이터는 2017 국어 정보시스템 경진대회에서 제공한 2016klpNER 데이터를 이용하였다. 실험은 전체 4258 문장 중 학습 데이터 3406 문장, 검증 데이터 426 문장, 테스트 데이터 426 문장으로 데이터를 나누어 실험을 진행하였다. 실험 결과 본 연구에서 제안하는 모델은 BIO 태깅 방식의 개체 청크 단위 성능 평가 결과 98.9%의 테스트 정확도(test accuracy)와 89.4%의 f1-score를 나타냈다.

  • PDF

도메인 적응 기술을 이용한 한국어 의미역 인식 (Korean Semantic Role Labeling Using Domain Adaptation Technique)

  • 임수종;배용진;김현기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2014년도 제26회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.56-60
    • /
    • 2014
  • 기계학습 방법에 기반한 자연어 분석은 학습 데이터가 필요하다. 학습 데이터가 구축된 소스 도메인이 아닌 다른 도메인에 적용할 경우 한국어 의미역 인식 기술은 15% 정도 성능 하락이 발생한다. 본 논문은 이러한 다른 도메인에 적용시 발생하는 성능 하락 현상을 극복하기 위해서 기존의 소스 도메인 학습 데이터를 활용하여, 소규모의 타겟 도메인 학습 데이터 구축만으로도 성능 하락을 최소화하기 위해 한국어 의미역 인식 기술에 prior 모델을 제안하며 기존의 도메인 적응 알고리즘과 비교 실험하였다. 추가적으로 학습 데이터에 사용되는 자질 중에서, 형태소 태그와 구문 태그의 자질 값을 기존보다 단순하게 적용하여 성능의 변화를 실험하였다.

  • PDF

한국어 화행 분류를 위한 최적의 자질 인식 및 조합의 비교 연구 (A Comparative Study on Optimal Feature Identification and Combination for Korean Dialogue Act Classification)

  • 김민정;박재현;김상범;임해창;이도길
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권11호
    • /
    • pp.681-691
    • /
    • 2008
  • 본 논문은 통계 기반 한국어 화행분류를 위하여 필요한 각 자질이 분류 성능에 미치는 영향과 성능 향상에 기여하는 자질 조합을 비교 평가한다. 지지벡터기계 학습 방법을 이용하여 구현한 화행 분류시스템을 통해 실험한 결과, n-gram 자질 중 품사 바이그램은 유용하지 않으며 형태소-품사 쌍과 다른 자질들을 결합했을 때 성능이 향상됨을 알 수 있었다. 또한, 자질 선택 기법을 사용한 자질 비율에 따른 실험을 통해서 매우 적은 자질만으로도 화행 분류에 있어 어느 정도 안정된 성능을 낼 수 있었다. 아울러, 실험 결과의 분석을 통해 한국어에서 마지막 어절이 문장 전체의 화행분류에 중요한 역할을 하며, 한국어의 특징인 자유 어순이나 주어의 빈번한 생략 등이 화행 분류 실험의 성능에 영향을 미친다는 사실도 알 수 있었다.

언어네트워크 분석을 통한 사서교사 역할 및 자질에 대한 학생과 교사의 인식 연구 (Students' and Teachers' Perception on the Roles and Qualifications of Teacher Librarians based on the Semantic Network Analysis)

  • 이연옥
    • 한국도서관정보학회지
    • /
    • 제51권3호
    • /
    • pp.81-102
    • /
    • 2020
  • 본 연구는 언어네트워크 분석방법을 활용하여 사서교사의 역할과 자질에 대한 학교구성원의 인식을 고찰하였다. 이를 위해 중등학교의 학생과 교사 대상의 설문조사를 통해 데이터를 수집하였다. 수집된 데이터를 사서교사의 역할, 자질, 건강 및 용모, 도서관환경에 대한 평가라는 4개의 프레임과 20개의 하위범주를 토대로 분류한 뒤 하위범주 간의 관계를 분석하였다. 분석결과는 다음과 같다. 첫째, 사서교사의 역할에 대한 학교구성원의 인식의 중심에 존재하는 핵심적 개념은 학생의 경우 '도서관운영'이었으며, 교사의 경우는 '독서교육'인 것으로 확인되었다. 둘째, '정보활용교육'은 학생과 교사의 인식을 형성하는 데 영향력이 낮은 것으로 조사되었다. 셋째, '수업 지원', '도서관활용수업 및 협력수업'과 같은 사서교사의 교수협력자로서의 역할에 대한 학생들의 인식은 높지 않은 데 비해 교사들은 이와 관련한 역할을 비중있게 인식하고 있는 것으로 나타났다. 넷째, 자료추천과 안내 활동을 하위개념으로 구성하는 '정보봉사'는 학생과 교사의 인식에 중심적 기능을 하고 있으며, 사서교사의 역할에 대한 인식을 형성하는 데도 영향력이 높은 것으로 조사되었다. 마지막으로, 사서교사의 자질에 대한 학생과 교사의 인식에서는 '전문성 및 전문지식'이 중심적인 기능을 하고 있는 것으로 조사되었다. 이 같은 결과는 사서교사의 역할 설정, 학생 및 교사에 대한 대응전략 수립과 인식개선을 위한 기초자료로 활용될 수 있을 것이다.