• 제목/요약/키워드: 자질 결합

검색결과 65건 처리시간 0.026초

X-바 이론의 중심어 개념을 도입한 형태소 단위의 한국어 자질 기반 문법 (A Morpheme-unit Korean Feature-Based Brammer (KFG) with the X-bar Theoretic Notion of Headedness)

  • 박소영;황영숙;임해창
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제26권10호
    • /
    • pp.1247-1259
    • /
    • 1999
  • 본 논문에서는 한국어 문장형성원리를 간결하게 제시할 수 있도록 X-바 이론의 중심어 개념을 도입한 한국어 자질기반 문법을 제안한다. 제안하는 문법은 어절에 관계없이 나타나는 한국어의 문법현상을 명확히 설명할 수 있도록 어절 대신 형태소를 기본단위로 한다. 그리고, 한국어의 구문범주가 지닌 의미정보와 기능정보를 자질을 이용하여 독립적으로 표현하며, 구문범주간의 결합관계를 바탕으로 하는 자질연산을 수행하여 문장을 분석한다. 또한, 한국어의 부분자유어순과 생략현상에 대해 견고하게 분석할 수 있도록 자질연산을 이진결합중심의 CNF(Chomsky Normal Form)로 제한한다. 이렇게 구성된 한국어 자질기반 문법은 규칙을 직관적이고도 간단하게 기술하며, 한국어의 다양한 문장들을 견고하게 분석한다. SERI Test Suites 97과 신문기사에서 746문장을 추출하여 실험한 결과 94%~99%의 적용율을 보였다.Abstract In this paper, we propose a Korean feature-based grammar(KFG) which adopts the X-bar theoretic notion of headedness for a precise representation of Korean syntactic structure. In order to explain various language phenomena in a given sentence, we use not the word but the morpheme as a constituent unit of KFG. We use features manifesting both the syntactic information and the semantic information of Korean syntactic categories, and feature operations based on the association relationship between two categories. In addition, we restrict feature operations to CNF(Chomsky Normal Form) binary form, which provides a robust representation for properties in Korean such as the frequent ellipsis and the partial free-order. The KFG is intuitive, simple, and versatile in representing most Korean sentences. The experimental result shows 94%~99% coverage on 746 sentences extracted from SERI Test Suites 97 and newspaper sentences.

레스토랑 영역에서의 자질기반 대화시스템 구현 (Implementation of Feature-based Dialog System in Restaurant domain)

  • 양현석;김동주;설용수;정성훈;김한우
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 추계학술발표대회
    • /
    • pp.425-428
    • /
    • 2011
  • 서비스 로봇과 펫 로봇 등 사람과 직접 상호작용하는 로봇기술의 필요성이 증가하고 있다. 대화시스템은 자연언어처리 기술을 활용하여 음성인식 기술과의 결합을 통해 현재 로봇에서 주로 사용되고 있는 버튼과 터치스크린 위주의 HRI(Human-Robot Interface)보다 자연스러운 HRI를 제공한다. 이러한 자연스러운 HRI를 수행할 수 있는 로봇을 구성하기 위해서는 로봇이 서비스를 제공할 실제 영역에 맞는 대화시스템의 연구가 필요하다. 본 논문에서는 자질사전, 단일화 문법(unification grammar), 대화 흐름도(dialogue flow diagram)를 사용한 레스토랑 영역의 자질기반(feature-based) 대화시스템을 제시한다. 자질 정보는 형태소, 시제, 어휘의 의미구조 등을 나타내며 화행(speech act) 결정에 사용하고 문장 자질과 구문 자질을 파서에서 활용한다. 자질기반 대화시스템을 통하여 레스토랑 영역에서 사용자 화행 이해 및 주문, 안내 등의 서비스를 성공적으로 수행할 수 있음을 보인다.

One-class 문서 분류를 위한 긍정 자질과 부정 자질의 결합 (Combining Positive and Negative Features for One-Class Document Classification)

  • 송호진;강인수;나승훈;이종혁
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2005년도 제17회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.35-42
    • /
    • 2005
  • 문서 분류에서의 one class 분류 문제는 오직 하나의 범주를 생성하고 새로운 문서가 주어졌을 때 그 문서가 미리 만들어진 하나의 범주에 속하는가를 판별하는 문제이다. 기존의 여러 범주로 이루어진 분류 문제를 해결할 때와는 달리 one class 분류에서는 학습 시에 관심의 대상이 되는 하나의 범주와 관련이 있는 문서들만을 사용하여 학습을 수행하기 때문에 범주의 경계를 정하는 것은 매우 어려운 작업이다. 이에 본 논문에서는 기존의 연구에서 one class 분류 문제를 해결할 때 관심의 대상이 되는 예제의 일부를 부정 예제로 간주하여 one class 문제를 two class 문제로 변환하고 추가적으로 새로운 가상 부정 예제를 설정하여 학습을 수행하였던 방법에서 더 나아가 범주화를 위한 적절한 부정자질을 선택하고 이를 긍정자질과 함께 사용하여 학습을 수행한 후 SVM을 통하여 범주화 성능을 학인 해 보기로 한다.

  • PDF

한국어 화행 분류를 위한 최적의 자질 인식 및 조합의 비교 연구 (A Comparative Study on Optimal Feature Identification and Combination for Korean Dialogue Act Classification)

  • 김민정;박재현;김상범;임해창;이도길
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권11호
    • /
    • pp.681-691
    • /
    • 2008
  • 본 논문은 통계 기반 한국어 화행분류를 위하여 필요한 각 자질이 분류 성능에 미치는 영향과 성능 향상에 기여하는 자질 조합을 비교 평가한다. 지지벡터기계 학습 방법을 이용하여 구현한 화행 분류시스템을 통해 실험한 결과, n-gram 자질 중 품사 바이그램은 유용하지 않으며 형태소-품사 쌍과 다른 자질들을 결합했을 때 성능이 향상됨을 알 수 있었다. 또한, 자질 선택 기법을 사용한 자질 비율에 따른 실험을 통해서 매우 적은 자질만으로도 화행 분류에 있어 어느 정도 안정된 성능을 낼 수 있었다. 아울러, 실험 결과의 분석을 통해 한국어에서 마지막 어절이 문장 전체의 화행분류에 중요한 역할을 하며, 한국어의 특징인 자유 어순이나 주어의 빈번한 생략 등이 화행 분류 실험의 성능에 영향을 미친다는 사실도 알 수 있었다.

Word2vec과 앙상블 분류기를 사용한 효율적 한국어 감성 분류 방안 (Effective Korean sentiment classification method using word2vec and ensemble classifier)

  • 박성수;이건창
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권1호
    • /
    • pp.133-140
    • /
    • 2018
  • 감성 분석에서 정확한 감성 분류는 중요한 연구 주제이다. 본 연구는 최근 많은 연구가 이루어지는 word2vec과 앙상블 방법을 이용하여 효과적으로 한국어 리뷰를 감성 분류하는 방법을 제시한다. 연구는 20 만 개의 한국 영화 리뷰 텍스트에 대해, 품사 기반 BOW 자질과 word2vec를 사용한 자질을 생성하고, 두 개의 자질 표현을 결합한 통합 자질을 생성했다. 감성 분류를 위해 Logistic Regression, Decision Tree, Naive Bayes, Support Vector Machine의 단일 분류기와 Adaptive Boost, Bagging, Gradient Boosting, Random Forest의 앙상블 분류기를 사용하였다. 연구 결과로 형용사와 부사를 포함한 BOW자질과 word2vec자질로 구성된 통합 자질 표현이 가장 높은 감성 분류 정확도를 보였다. 실증결과, 단일 분류기인 SVM이 가장 높은 성능을 나타내었지만, 앙상블 분류기는 단일 분류기와 비슷하거나 약간 낮은 성능을 보였다.

인용문헌 표제를 이용한 문헌 클러스터링에 관한 연구 (Document Clustering Using Reference Titles)

  • 최상희
    • 정보관리학회지
    • /
    • 제27권2호
    • /
    • pp.241-252
    • /
    • 2010
  • 본 연구에서는 원문헌의 표제가 문헌클러스터링에서 문헌의 주제를 나타내는데 효과적인 자질로 인식되고 있지만 동의어나 유사어를 포함하여 문헌의 주제를 대표하는데 한계가 있음을 인지하고 인용문헌의 표제로 클러스터링 자질을 확대하는 방안을 제시하였다. 문헌 클러스터링의 자질로 원 문헌의 표제 용어와 인용문헌의 표제 용어, 두 종류의 표제 용어를 혼합하여 적용하여 인용문헌의 표제가 클러스터링 성능을 향상시키는 정도를 측정하였다. 각 자질별로 계층적 클러스터링 기법 3개, within group average linkage, complete linkage, Ward 기법을 결합하여 클러스터를 생성하는 성능을 비교, 분석하였는데 원문헌과 인용문헌 표제어를 혼합하여 within group average linkage 기법으로 클러스터링 한 경우가 가장 좋은 결과를 나타내었다.

어휘 자질 기반 기계 학습을 사용한 한국어 암묵 인용문 인식 (Recognition of Korean Implicit Citation Sentences Using Machine Learning with Lexical Features)

  • 강인수
    • 한국산학기술학회논문지
    • /
    • 제16권8호
    • /
    • pp.5565-5570
    • /
    • 2015
  • 암묵인용문 인식은 학술문헌의 본문 텍스트 내에서 명시적 인용표지가 누락된 인용문장을 자동 인식하는 것으로 인용 기반 논문 검색 및 요약의 핵심 기술이다. 기존 암묵인용문 인식의 최신 연구들은 단어 ngram, 단서어구, 명시인용문과의 거리, 기존 연구자의 성, 기존 방법의 명칭 등 다양한 자질을 활용하여 50% 이상 인식 수준을 보고하고 있다. 그러나 대부분의 기존 연구들은 영어에 대해 수행되었으며 한국어의 경우 최근 긍정/부정 단서어구 패턴을 활용한 규칙 기반 시도에서 42% 성능 수준이 보고되어 있어 추가 성능 향상이 요구되는 상황이다. 이 연구에서는 한국어 어휘 자질을 사용하여 한국어 암묵인용문의 기계학습 기반 인식을 시도하였다. 이를 위해 어절, 형태소, 음절 단위에 기반한 다양한 크기의 어휘 ngram 자질들의 인식 성능을 비교 평가하고 한국어 암묵인용문 인식에 적합한 어휘 자질로 형태소 1gram 및 음절 2gram 단위를 결정하였다. 또한 이들 어휘 자질들을 전후 명시인용문들과의 인접성을 표현한 위치 자질들과 결합하여 한국어 암묵인용문 인식 성능을 50% 이상 수준으로 대폭 향상시켰다.

SVM과 위치 기반의 자질을 이용한 MicroRNA 목표 유전자 예측 (MicroRNA Target Prediction using a Support Vector Machine and Position based Features)

  • 김성규;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.286-288
    • /
    • 2005
  • MicroRNA (miRNA)는 작은 크기의 RNA분자로서 동식물의 유전자 발현 과점을 직접적으로 조절하는 인자로 알려져 있다. MiRNA는 보통 목표 유전자의 3'-UTR 영역에 상보성을 갖고 결합함으로써 작용하며 특히 miRNA의 5'부분의 8 nt 정도가 seed로서 중요하다고 알려져 있다. 반면 최근의 연구에 따르면 seed 부분의 서열의 조성 및 양상이 변화함에 따라 특이도가 결정됨을 알 수 있지만 기존의 컴퓨터를 이용한 miRNA 목표 유전자 예측 방법들은 이러한 정보를 활용하지 못한다. 본 논문에서는 열역학적인 수치와 서열의 조성뿐 아니라 miRNA:mRNA pair의 위치에 기반한 정보들을 학습에 자질로서 포함하여 목표 유전자를 예측한다. 그 결과는 위치 기반 자질이 학습 성능 향상에 중요하게 기여함을 보여준다.

  • PDF

기계학습 및 필터링 방법을 결합한 경쟁관계 인식 (Competition Relation Extraction based on Combining Machine Learning and Filtering)

  • 이충희;서영훈;김현기
    • 정보과학회 논문지
    • /
    • 제42권3호
    • /
    • pp.367-378
    • /
    • 2015
  • 본 논문은 기계학습 방법과 필터링 방법을 결합해서 경쟁관계를 인식하는 방법에 대한 연구이다. 기존 연구들은 기계학습 방법에만 의존해서 관계유형을 인식하는 연구들이 대부분이며. 사용되는 자질도 일반적인 관계유형에 적합한 자질을 사용하고 특히 구문분석 정보가 매우 중요한 자질로 사용된다. 본 논문에서는 구문분석 등의 언어분석 결과를 이용하지 않고, 단순한 자질들(어휘, 거리, 위치, 단서단어)만을 사용해도 경쟁관계 인식에 효과적임을 확인하였다. 또한, 경쟁관계인식 긍정 정확도를 향상시킬 수 있는 문장별 경쟁유무 분류방법, 스팸분류 방법, 거리제약 기반 자질필터링 방법을 기계학습 방법과 결합한 방법론을 제안한다. 방법론 검증을 위해서 뉴스분야 2,565개 문장을 평가셋으로 구축하였고, 비교 평가를 위해서 규칙기반 경쟁관계 인식기와 기존연구의 관계추출 방법론에 기반한 일반 관계추출기를 적용해서 비교하였다. 성능평가 결과로 규칙기반 엔진이 긍정정확도와 전체정확도(accuracy)가 81.2%와 56.8% 성능을 보였고, 일반 관계추출기는 61.2%와 56.3%를 보였다. 그에 비해서 본 논문에서 제안하는 방법은 긍정 정확도 92.2%와 전체정확도 71.3% 성능을 보여서 경쟁관계 인식에 효과적임을 확인하였다.

띄어쓰기 및 문장 경계 인식을 위한 다중 손실 선형 결합 기반의 다중 클래스 분류 시스템 (Multi-class Classification System Based on Multi-loss Linear Combination for Word Spacing and Sentence Boundary Detection)

  • 김기환;서지수;이경열;고영중
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.185-188
    • /
    • 2018
  • 띄어쓰기와 문장 경계 인식은 그 성능에 따라 자연어 분석 단계에서 오류를 크게 전파하기 때문에 굉장히 중요한 문제로 인식되고 있지만 각각 서로 다른 자질을 사용하는 문제 때문에 각각 다른 모델을 사용해 순차적으로 해결하였다. 그러나 띄어쓰기와 문장 경계 인식은 완전히 다른 문제라고는 볼 수 없으며 두 모델의 순차적 수행은 앞선 모델의 오류가 다음 모델에 전파될 뿐만 아니라 시간 복잡도가 높아진다는 문제점이 있다. 본 논문에서는 띄어쓰기와 문장 경계 인식을 하나의 문제로 보고 한 번에 처리하는 다중 클래스 분류 시스템을 통해 시간 복잡도 문제를 해결하고 다중 손실 선형 결합을 사용하여 띄어쓰기와 문장 경계 인식이 서로 다른 자질을 사용하는 문제를 해결했다. 최종 모델은 띄어쓰기와 문장 경계 인식 기본 모델보다 각각 3.98%p, 0.34%p 증가한 성능을 보였다. 시간 복잡도 면에서도 단일 모델의 순차적 수행 시간보다 38.7% 감소한 수행 시간을 보였다.

  • PDF