• Title/Summary/Keyword: 자율 항법

Search Result 114, Processing Time 0.022 seconds

Development of a Hover-capable AUV System for In-water Visual Inspection via Image Mosaicking (영상 모자이킹을 통한 수중 검사를 위한 호버링 타입 AUV 시스템 개발)

  • Hong, Seonghun;Park, Jeonghong;Kim, Taeyun;Yoon, Sukmin;Kim, Jinwhan
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.194-200
    • /
    • 2016
  • Recently, UUVs (unmanned underwater vehicles) have increasingly been applied in various science and engineering applications. In-water inspection, which used to be performed by human divers, is a potential application for UUVs. In particular, the operational safety and performance of in-water inspection missions can be greatly improved by using an underwater robotic vehicle. The capabilities of hovering maneuvers and automatic image mosaicking are essential for autonomous underwater visual inspection. This paper presents the development of a hover-capable autonomous underwater vehicle system for autonomous in-water inspection, which includes both a hardware platform and operational software algorithms. Some results from an experiment in a model basin are presented to demonstrate the feasibility of the developed system and algorithms.

무인항공기의 제어기술개발 동향

  • Gang, Yeong-Sin;Park, Beom-Jin;Yu, Chang-Seon
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.4 no.2
    • /
    • pp.55-67
    • /
    • 2006
  • 20세기에 탄생한 동력비행기는 인간의 이동능력을 비약적으로 향상시켰다. 인류의 미개척지였던 항공분야의 발전은 지속적인 기술개발을 통해 더 빨리, 더 멀리, 더 높이 향하기 위해서 계속 나아가고 있다. 이러한와중에 최근에 괄목할 만한 성장을 이룬 컴퓨터와 소프트웨어 산업의 발전은 비행임무에 따라 위험성이 높거나, 사람이 하기 힘든 반복적이고 지루한 비행을 대신하기위한 로봇 비행체 즉, 무인항공기의 개발을 가능하게 하였다. 무인항공기의 탄생 초기에는 조종사의 희생을 줄이기 위해 군사 분야에서 주로 사용되었으나, 산림감시나 해안정찰, 기상관측, 재난관측, 조난자 수색 등 민수분야의 임무로 점차 활동영역이 넓혀지고 있다. 현재 무인항공기에 탑재된 인공지능의 수준은 안정된 비행이 가능하도록 하는 자동조종(autopilot)과 주어진 비행경로를 추종하기위한 항법유도(Navigation & Guidance)정도이며, 비행 중 발생하는 비상상황에 대처하기 위한 의사판단은 지상의 조종자에 의해 결정된다. 앞으로는 계획되지 않은 상황을 맞이했을 때 무인기 스스로 판단하여 경로를 변경하고, 동시에 여러 무인기들과 협력하여 임무를 수행함으로써 임무효율을 높이는 방향으로 인공지능의 수준이 향상될 것이다. 본 논문에서는 최근의 무인항공기 개발추세와 이들 무인기에 고려되고 있는 제어기에 대해 살펴보고, 향후 무인항공기에 적용될 자율비행 알고리듬과 제어기 시스템의 개발동향에 대해 고찰하였다.

  • PDF

Synchronous Interfusion of the Compensatory Filters Based on Multi-rate Sensors for the Control of the Autonomous Vehicle (자율주행 차량 제어를 위한 다중 주기 센서 기반의 상보 필터 동기 융합)

  • Bak, Jeong-Hyeon;Lee, Kwanghee;Lee, Chul-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.220-227
    • /
    • 2014
  • This paper presents about multi-rate sensors' synchronization and filter fusion via a sigmoid function of the Kalman filter. To synchronize multi-rate sensors, the estimation states of the Kalman filter is modified. A specific matrix that makes the filter choose sensor values only updated is multiplied to measurement matrix. For the filter that has weak points on some criteria, filter fusion is suggested by using sigmoid function. Modified kalman filter is tested with practical case. A sigmoid function was designed for the test and the performance of the modified function is estimated with respect to conventional Kalman filter. Unscented Kalman filter is used to the base filter of the suggested filter because of its stability.

A Study on Localization Technique Using Extended Kalman Filter for Model-Scale Autonomous Marine Mobility (모형 스케일 자율운항 해양 이동체의 확장칼만필터 기반 측위 기법에 관한 연구)

  • Youngjun You
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.2
    • /
    • pp.98-105
    • /
    • 2024
  • Due to the low accuracy of measured data obtained from low-cost GNSS and IMU devices, it was hard to secure the required accuracy of the measured position and heading angle for autonomous navigation which was conducted by a model-scale marine mobility. In this paper, a localization technique using the Extended Kalman Filter (EKF) is proposed for coping with the issue. First of all, a position and heading angle estimator is developed using EKF with the assumption of a point mass model. Second, the measured data from GNSS and IMU, including position, heading angle, and velocity are used for the estimator. In addition, the heading angle is additionally obtained by comparing the LiDAR point cloud with map information for a temporal water tank. The newly acquired heading angle is integrated into the estimator as an additional measurement to correct the inaccuracy in the heading angle measured from the IMU. The effectiveness of the proposed approach is investigated using data acquired from preliminary tests of the model-scale autonomous marine mobility.

A Comparison of Korea Standard HD Map for Actual Driving Support of Autonomous Vehicles and Analysis of Application Layers (자율주행자동차 실주행 지원을 위한 표준 정밀도로지도 비교 및 활용 레이어 분석)

  • WON, Sang-Yeon;JEON, Young-Jae;JEONG, Hyun-Woo;KWON, Chan-Oh
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.132-145
    • /
    • 2020
  • By coming of the 4th industrial revolution era, HD map have became a key infrastructure for determining precise location of autonomous driving in areas of futuristic cars, logistics and robots. Autonomous vehicles have became more dependent on HD map to determine the exact location of objects detected by various sensors such as LiDAR, GNSS, Radar, and stereo cameras as well as self-location decisions. By actualizing autonomous driving and C-ITS technologies, the demand for precise information on HD map have increased. And also the demand for the creation of new information based on the convergence of various changes and real-time information have increased. In this study, domestic and international HD map standards and related environments have analyzed. Based on this, usability has researched which comparison with standard HD map established by various institutions. Additionally, usability of standard HD map have studied for applying actual autonomous vehicles by reworking HD map. By the result of study, standard HD map have well established to use by various institutions. If further research about layer classification and definition by institutions will carried out based on this study, it has expected that and efficient establishment and renewal of HD map will take place.

Development of Sailing Algorithm for Ship Group Navigation System (선박 그룹항해시스템의 항법 알고리즘 개발)

  • Wonjin, Choi;Seung-Hwan, Jun
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.554-561
    • /
    • 2022
  • Technology development related to maritime autonomous surface ships (MASS) is actively progressing around the world. However, since there are still many technically unresolved problems such as communication, cybersecurity, and emergency response capabilities, it is expected that it will take a lot of time for MASS to be commercialized. In this study, we proposed a ship group navigation system in which one leader ship and several follower ship are grouped into one group. In this system, when the leader ship begins to navigate, the follower ship autonomously follows the path of the leader ship. For path following, PD (proportional-derivative) control is applied. In addition, each ship navigates in a straight line shape while maintaining a safe distance to prevent collisions. Speed control was implemented to maintain a safe distance between ships. Simulations were performed to verify the ship group navigation system. The ship used in the simulation is the L-7 model of KVLCC2, which has related data disclosed. And the MMG (Maneuvering Modeling Group) standard method proposed by the Japan Society of Naval Architects and Ocean Engineering (JASNAOE) was used as a model of ship maneuvering motion. As a result of the simulation, the leader ship navigated along a predetermined route, and the follower ship navigated along the leader ship's path. During the simulation, it was found that the three ships maintained a straight line shape and a safe distance between them. The ship group navigation system is expected to be used as a navigation system to solve the problems of MASS.

Development of an Autonomous Guide Robot for Campus Tour (캠퍼스 자율 안내로봇 개발)

  • Lim, Jong Hwan;Kim, Hee Jung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.543-551
    • /
    • 2017
  • A campus guide robot was developed that can autonomously guide people through a university campus. The robot is able to evaluate its location using Differential Global Positioning System (DGPS) and Dead-Reckoning using the encoders mounted on its wheels. The robot can navigate autonomously along a guide route that is set in advance. A new position-based guidance approach was suggested. Unlike the conventional method of setting the guide sequence in advance, the robot acquires guidance by judging whether there is guide information corresponding to its current position. The robot searches guide information from the guide database while it moves along the guide path autonomously. If there is any guide information available around the location of the robot, then it performs guide functions. We also suggested an effective guide scenario that can maximize the interest of people. The performance of the robot was tested through sets of experiments in a true campus environment.

Method to Improve Localization and Mapping Accuracy on the Urban Road Using GPS, Monocular Camera and HD Map (GPS와 단안카메라, HD Map을 이용한 도심 도로상에서의 위치측정 및 맵핑 정확도 향상 방안)

  • Kim, Young-Hun;Kim, Jae-Myeong;Kim, Gi-Chang;Choi, Yun-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1095-1109
    • /
    • 2021
  • The technology used to recognize the location and surroundings of autonomous vehicles is called SLAM. SLAM standsfor Simultaneously Localization and Mapping and hasrecently been actively utilized in research on autonomous vehicles,starting with robotic research. Expensive GPS, INS, LiDAR, RADAR, and Wheel Odometry allow precise magnetic positioning and mapping in centimeters. However, if it can secure similar accuracy as using cheaper Cameras and GPS data, it will contribute to advancing the era of autonomous driving. In this paper, we present a method for converging monocular camera with RTK-enabled GPS data to perform RMSE 33.7 cm localization and mapping on the urban road.

Localization and Mapping System using Single Camera and PSD Sensors (단일 카메라와 PSD 센서를 이용한 로봇 위치추적 및 맵핑 시스템)

  • Yoo, Sung-Goo;Chong, Kil-To
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.339-340
    • /
    • 2008
  • 로봇의 현재 위지 추적은 무인 로봇 자동 항법시스템의 중요 기술로 센서 데이터로부터 로봇의 위치를 결정하고 환경맵을 구성하는 것이다. 기존 방법으로는 초음파, 레이저 등의 거리 측정 센서를 이용해 로봇의 전역 위치를 찾는 방법과 스테레오 비전을 통한 방법이 개발되었다. 거리 측정 센서만으로 로봇위치 추적 알고리즘은 계산량이 감소하고 비용이 적게 들지만 센서오차율 및 환경장애에 따른 오류가 크다. 이에 반해 스테레오 비전 시스템은 3차원 공간영역을 정확히 측정할 수 있지만 계산량이 많아 고사양의 시스템을 요구하고 알고리즘 구현에 어려움이 있다. 따라서 본 논문에서는 단일 카메라 영상과 PSD(position sensitive device) 센서를 사용하여 로봇의 현재 위치를 추적하고 환경맵을 구성하여 자율이동이 가능한 시스템을 제안한다.

  • PDF

Localization of AUV Using Visual Shape Information of Underwater Structures (수중 구조물 형상의 영상 정보를 이용한 수중로봇 위치인식 기법)

  • Jung, Jongdae;Choi, Suyoung;Choi, Hyun-Taek;Myung, Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.392-397
    • /
    • 2015
  • An autonomous underwater vehicle (AUV) can perform flexible operations even in complex underwater environments because of its autonomy. Localization is one of the key components of this autonomous navigation. Because the inertial navigation system of an AUV suffers from drift, observing fixed objects in an inertial reference system can enhance the localization performance. In this paper, we propose a method of AUV localization using visual measurements of underwater structures. A camera measurement model that emulates the camera’s observations of underwater structures is designed in a particle filtering framework. Then, the particle weight is updated based on the extracted visual information of the underwater structures. The proposed method is validated based on the results of experiments performed in a structured basin environment.