• Title/Summary/Keyword: 자율학습용

Search Result 43, Processing Time 0.025 seconds

Study on Enhancing Training Efficiency of MARL for Swarm Using Transfer Learning (전이학습을 활용한 군집제어용 강화학습의 효율 향상 방안에 관한 연구)

  • Seulgi Yi;Kwon-Il Kim;Sukmin Yoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.361-370
    • /
    • 2023
  • Swarm has recently become a critical component of offensive and defensive systems. Multi-agent reinforcement learning(MARL) empowers swarm systems to handle a wide range of scenarios. However, the main challenge lies in MARL's scalability issue - as the number of agents increases, the performance of the learning decreases. In this study, transfer learning is applied to advanced MARL algorithm to resolve the scalability issue. Validation results show that the training efficiency has significantly improved, reducing computational time by 31 %.

Design of Household Trash Collection Robot using Deep Learning Object Recognition (딥러닝 객체 인식을 이용한 가정용 쓰레기 수거 로봇 설계)

  • Ju-hyeon Lee;Dong-myung Kim;Byeong-chan Choi;Woo-jin Kim;Kyu-ho Lee;Jae-wook Shin;Tae-sang Yun;Kwang Sik Youn;Ok-Kyoon Ha
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.113-114
    • /
    • 2023
  • 가정용 생활 쓰레기 수거 작업은 야간이나 이른 새벽에 이루어지고 있어 환경미화원의 안전사고와 수거 차량으로 인한 소음 문제가 빈번하게 발생한다. 본 논문에서는 딥러닝 기반의 영상 인식을 활용하여 종량제 봉투를 인식하고 수거가 가능한 생활 쓰레기 수거 로봇의 설계를 제시한다. 제시하는 생활 쓰레기 수거 로봇은 지정 구역을 자율주행하며 로봇에 장착된 카메라를 이용해 학습된 모델을 기반으로 가정용 쓰레기 종량제 봉투를 검출한다. 이를 통해 처리 대상으로 지정된 종량제 봉투와 로봇 팔 사이의 거리를 카메라를 활용하여 얻은 깊이 정보와 2차원 좌표를 토대로 목표 위치를 예측해 로봇 팔의 관절을 제어하여 봉투를 수거한다. 해당 로봇은 생활 쓰레기 수거 작업 과정에서 환경미화원을 보조하여 미화원의 안전 확보와 소음 저감을 위한 기기로 활용될 수 있다.

  • PDF

A Study on Design and Implementation of Digital Content for Education of e-Commerce (전자상거래 교육을 위한 디지털 콘텐츠 설계 및 구현에 관한 연구)

  • Kim Kyung-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.6
    • /
    • pp.301-308
    • /
    • 2005
  • Through the development of the Internet and multimedia systems, usage of cyber education with multimedia contents is increasing. On-line education differs from face-to-face education in that it overcomes the limits of the time and space, and supports a repeated self study at the student's study level while using several media and educational contents. In this paper, we will design and implement e-commerce educational content which is effective for students and useful for the process of cyber education. In addition, we will produce statistics from a questionnaire which questioned students on the effectiveness of the content.

  • PDF

Artificial Intelligence-Based Harmful Birds Detection Control System (인공지능 기반 유해조류 탐지 관제 시스템)

  • Sim, Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.175-182
    • /
    • 2021
  • The purpose of this paper is to develop a machine learning-based marine drone to prevent the farming from harmful birds such as ducks. Existing drones have been developed as marine drones to solve the problem of being lost if they collide with birds in the air or are in the sea. We designed a CNN-based learning algorithm to judge harmful birds that appear on the sea by maritime drones operating by autonomous driving. It is designed to transmit video to the control PC by connecting the Raspberry Pi to the camera for location recognition and tracking of harmful birds. After creating a map linked with the location GPS coordinates in advance at the mobile-based control center, the GPS location value for the location of the harmful bird is received and provided, so that a marine drone is dispatched to combat the harmful bird. A bird fighting drone system was designed and implemented.

Development of Commercial Game Engine-based Low Cost Driving Simulator for Researches on Autonomous Driving Artificial Intelligent Algorithms (자율주행 인공지능 알고리즘 연구를 위한 상용 게임 엔진 기반 초저가 드라이빙 시뮬레이터 개발)

  • Im, Ji Ung;Kang, Min Su;Park, Dong Hyuk;Won, Jong hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.242-263
    • /
    • 2021
  • This paper presents a method to implement a low-cost driving simulator for developing autonomous driving algorithms. This is implemented by using GTA V, a physical engine-based commercial game software, containing a function to emulate output and data of various sensors for autonomous driving. For this, NF of Script Hook V is incorporated to acquire GT data by accessing internal data of the software engine, and then, various sensor data for autonomous driving are generated. We present an overall function of the developed driving simulator and perform a verification of individual functions. We explain the process of acquiring GT data via direct access to the internal memory of the game engine to build up an autonomous driving algorithm development environment. And, finally, an example applicable to artificial neural network training and performance evaluation by processing the emulated sensor output is included.

Mobile robot control by MNN using optimal EN (최적 EN를 사용한 MNN에 의한 Mobile Robot제어)

  • Choi, Woo-Kyung;Kim, Seong-Joo;Seo, Jae-Yong;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.186-191
    • /
    • 2003
  • Skills in tracing of the MR divide into following, approaching, avoiding and warning and so on. It is difficult to have all these skills learned as neural network. To make this up for, skills consisted of each module, and Mobile Robot was controlled by the output of module adequate for the situation. A mobile Robot was equipped multi-ultrasonic sensor and a USB Camera, which can be in place of human sense, and the measured environment information data is learned through Modular Neural Network. MNN consisted of optimal combination of activation function in the Expert Network and its structure seemed to improve learning time and errors. The Gating Network(GN) used to control output values of the MNN by switching for angle and speed of the robot. In the paper, EN of Modular Neural network was designed optimal combination. Traveling with a real MR was performed repeatedly to verity the usefulness of the MNN which was proposed in this paper. The robot was properly controlled and driven by the result value and the experimental is rewarded with good fruits.

The Effect of Scratch Programming Education on Elementary School Students' Self-directed Learning Ability (스크래치 프로그래밍 교육이 초등학생의 자기 주도적 학습 능력에 미치는 효과)

  • Park, Yong-Chul;Lee, Soo-Jung
    • Journal of The Korean Association of Information Education
    • /
    • v.15 no.1
    • /
    • pp.93-100
    • /
    • 2011
  • Previous studies on educational programming language reported that programming education can help students develop their abilities in cognitive, logical and reflecting thinking for problem solving. In this study, we examined the effects of Scratch programming language education on self-directed learning ability through six-grade elementary school students. The study results are that the treatment group shows more improvement with statistical significance on the subscales of self-directed learning such as openness, internal motivation, and autonomy, than the control group. These effects are especially larger with the students with high ICT literacy, whose degree is higher than that as a result of using digital textbook, UCC, and cyber home education reported in previous studies.

  • PDF

Design of Deep Learning-Based Automatic Drone Landing Technique Using Google Maps API (구글 맵 API를 이용한 딥러닝 기반의 드론 자동 착륙 기법 설계)

  • Lee, Ji-Eun;Mun, Hyung-Jin
    • Journal of Industrial Convergence
    • /
    • v.18 no.1
    • /
    • pp.79-85
    • /
    • 2020
  • Recently, the RPAS(Remote Piloted Aircraft System), by remote control and autonomous navigation, has been increasing in interest and utilization in various industries and public organizations along with delivery drones, fire drones, ambulances, agricultural drones, and others. The problems of the stability of unmanned drones, which can be self-controlled, are also the biggest challenge to be solved along the development of the drone industry. drones should be able to fly in the specified path the autonomous flight control system sets, and perform automatically an accurate landing at the destination. This study proposes a technique to check arrival by landing point images and control landing at the correct point, compensating for errors in location data of the drone sensors and GPS. Receiving from the Google Map API and learning from the destination video, taking images of the landing point with a drone equipped with a NAVIO2 and Raspberry Pi, camera, sending them to the server, adjusting the location of the drone in line with threshold, Drones can automatically land at the landing point.

Proposal of autonomous take-off drone algorithm using deep learning (딥러닝을 이용한 자율 이륙 드론 알고리즘 제안)

  • Lee, Jong-Gu;Jang, Min-Seok;Lee, Yon-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.187-192
    • /
    • 2021
  • This study proposes a system for take-off in a forest or similar complex environment using an object detector. In the simulator, a raspberry pi is mounted on a quadcopter with a length of 550mm between motors on a diagonal line, and the experiment is conducted based on edge computing. As for the images to be used for learning, about 150 images of 640⁎480 size were obtained by selecting three points inside Kunsan University, and then converting them to black and white, and pre-processing the binarization by placing a boundary value of 127. After that, we trained the SSD_Inception model. In the simulation, as a result of the experiment of taking off the drone through the model trained with the verification image as an input, a trajectory similar to the takeoff was drawn using the label.

산수과 학습 보조 자료의 효율적인 활용 방안

  • 정창현;양인환;양순렬;신성균
    • The Mathematical Education
    • /
    • v.29 no.2
    • /
    • pp.117-139
    • /
    • 1990
  • 본 연구는 국민 학교 산수 익힘책의 효율적인 활용 방안을 찾는 데 목적이 있으며, 이를 위하여 선행 및 문헌 연구와 "산수 익힘책"의 활용 실태를 조사하였다. 본 연구에서 수행한 연구 내용을 요약하면 다음과 같다. 가. 이론적 배경 연구 및 산수 익힘책의 개발 방향 문헌과 선행 연구를 통하여 보조 교과서의 특성에 따를 활용 방안 및 보조 교과서의 학습 내용에 따른 틀용 방안을 이론적으로 고찰하였고, "산수 익힘책"의 개발 방향 및 그 특색에 대하여 조사하였다. 나. 활용 실태 조사 사용하고 있는 "산수 익힘책"의 활용 실태를 파악하여, 활용 방안을 마련하는 기선 자료를 수집하기 위함이며, 조사 내용은 다음과 같다. 1) 조사 내용 (1) 교사의 측면에서 ㆍ "산수 익힘책"의 도움 정도 ㆍ "산수 익힘책"의 수업 시간에의 활응 목적, 방법 ㆍ "산수 익힘책"의 활용시 편리성 ㆍ 흥미성 ㆍ 활용 시기 ㆍ 가정 학습으로 부과시의 목적 ㆍ 문제 풀이 결과 확인자 ㆍ 교육 과정 반영 정도 ㆍ 개선점 (2) 학부모의 측면에서 ㆍ"산수 익힘책"의 활용 목적 ㆍ "산수 익힘책"의 활용 정도 ㆍ "산수 익힘책"의 도움 정도 ㆍ 학부모의 역할 정도 ㆍ "산수 익힘책"에 대한 학생의 흥미도 ㆍ "산수 익힘책"의 개선점 2) 조사 도구 조사 내용에 대하여 국민 학교 1, 2, 3학년 담임 교사용과 학부모용의 질문지를 각각 작성하여 전문가의 검토를 거쳐 "산수 익힘책"의 활용에 관한 실태 조사지를 개발하였다. 이 때, 각 학년별 교사용끼리, 학부모용끼리의 질문지의 문항은 서로 같게 하였으며 교사용은 25문항, 학부모용은 16문항으로 구성하였다. 다. 활용 방안 구안 "산수 익힘책"의 개발 방향과 "산수 익힘책"의 활용 실태 조사에 기초하여 산수 익힘책의 효율적인 활용 방법을 수업 절차에 따라 구분하였다. 수업 절차는 여러 가지 형태가 있지만 본 연구에서는 KEDI의 수업 과정 일반 모형에 준하여 산수 익힘책의 활용 방법을 구안하였다. 라. 활용 방안을 구안하였다. 1) 적용 목적 구안된 "산수 익힘책"의 활용 방안의 현장 적용은 활용 방안의 질을 높이려는 대에 중요한 목적이 있다. 적용 결과는 현장 적용 가능성을 판단할 수 있는 입증 자료가 될 수 있을 뿐만 아니라, "산수 익힘책" 관심을 가지고 있는 교사나 연구자에게 학력 향상 가능성에 대한 경험적 근거를 제시함으로써 중요한 시사를 줄 수 있을 것이다. 2) 적용 결과 전체적으로 적응 수업이 실시된 지 3주후 부터는 활용 방안에 익숙해져 "산수 익힘책"을 효과적으로 활용할 수 있었다. 그 뿐만 아니라 자율학습시 학생들 스스로가 상호 확인을 하고, 서로 결손이 있는 부분을 가르쳐 주는 협동 학습이 이루어졌다.

  • PDF