• Title/Summary/Keyword: 자율운항제어 시스템

Search Result 102, Processing Time 0.02 seconds

Event-Triggered NMPC-Based Ship Collision Avoidance Algorithm Considering COLREGs (국제해상충돌예방규칙을 고려한 Event Triggered NMPC 기반의 선박 충돌 회피 알고리즘)

  • Yeongu Bae;Jaeha Choi;Jeonghong Park;Miniu Kang;Hyejin Kim;Wonkeun Yoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.3
    • /
    • pp.155-164
    • /
    • 2023
  • About 75% of vessel collision accidents are caused by human error, which causes enormous economic loss, environmental pollution, and human casualties, thus research on automatic collision avoidance of vessels is being actively conducted. In addition, vessels must comply with the COLREGs rules stipulated by IMO when performing collision avoidance with other vessels in motion. In this study, the collision risk was calculated by estimating the position and velocity of other vessels through the Probabilistic Data Association Filter (PDAF) algorithm based on RADAR sensor data. When a collision risk is detected, we propose an event-triggered Nonlinear Model Predict Control (NMPC) algorithm that geometrically creates waypoints that satisfy COLREGs and follows them. To verify the proposed algorithm, simulations through MATLAB are performed.

Comparison of Combustion, Emissions and Efficiency Characteristics as Varying Spark Timings and Excess air ratios in an Ammonia-fueled Direct Injection Spark Ignition Engine (직접분사식 암모니아 전소 엔진에서 점화 시기와 공기과잉률의 변경에 따른 연소 및 배기, 효율 특성 비교)

  • Yonghun Jang;Cheolwoong Park;Yongrae Kim;Young Choi;Chanki Min;Seungwoo Lee;Hongkil Baek;Jeongwoo Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.1-10
    • /
    • 2023
  • Due to the development of the industrial revolution, regulations on exhaust emissions have been continuously strengthened to reduce the rapidly increasing greenhouse gas emissions. The use of environmentally friendly fuels is essential to meet these regulations. Hydrogen has been attracting attention as a future environmentally friendly fuel, but due to its material properties, it faces significant challenges in handling and storage. As an alternative, ammonia has been proposed. Ammonia can be easily liquefied at room temperature compared to hydrogen and has a high energy density. In order to examine the applicability of ammonia as an engine fuel, experiments were conducted to investigate the effects of changes in combustion control parameters in a direct injection ammonia combustion engine. The experiments were conducted by varying two variables: spark timing and excessive air ratio. Observations were made on combustion stability and the trends of exhaust emissions such as nitrogen oxides and unburned ammonia under the conditions of an engine speed of 1,500 rpm and medium to high loads (brake torque of 200 Nm). By optimizing the combustion control parameters, conditions for stable combustion even when using ammonia as the sole fuel were identified, and plans are underway to apply strategies for future expansion of the operating range.