• Title/Summary/Keyword: 자유롭게 전파하는 화염

Search Result 3, Processing Time 0.016 seconds

The Flame Structure of Freely Porpagating CH4/O2/N2Premixed Flames on the O2Enrichment (산소부화된 자유롭게 전파하는 CH4/O2/N2예혼합화염의 화염구조)

  • Lee, Gi-Yong;Nam, Tae-Hyeong;Yu, Hyeon-Seok;Choe, Dong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.555-560
    • /
    • 2002
  • Numerical simulations of freely propagating flames burning stoichiometric CH$_4$/O$_2$/$N_2$mixtures are performed at atmospheric pressure in order to understand the effect of the $O_2$enrichment level on CH$_4$/Air flame. A chemical kinetic mechanism is employed, the adopted scheme involving 54 gas-phase species and 632 forward reactions. The calculated flame speeds are compared with the experiments for the flames established at several $O_2$enrichment level, the results of which is in excellent agreement. As a result of the increased $O_2$enrichment level from 0.21 to 1, the mole fraction of CO in the burred gas is increased. The flame speed and the temperature in the burned gas are also increased, but the thickness of the flame is severely shrunken in the preheat region. The maximum of the calculated EINO is obtained around 0.6 and 0.7 of the $O_2$enrichment level in cases of flames for fuel-lean mixtures.

Effects of Oxygen Enrichment on the Structure of Premixed Methane/Fluorinated Compound Flames (메탄-불소계 화합물의 예혼합화염 구조에서 산소 부화의 효과)

  • Lee, Ki-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.8
    • /
    • pp.839-845
    • /
    • 2011
  • We performed numerical simulations of freely propagating premixed flames at atmospheric pressure to investigate the influence of trifluoromethane on $CH_4/O_2/N_2$ flames under oxygen enrichment. Trifluoromethane significantly contributed toward a reduction in flame speed, the magnitude of which was larger in terms of the physical effect than the chemical effect. More trifluoromethane could be added and consumed on oxygen-enriched $CH_4/O_2/N_2$ flames. $CHF_3$ was decomposed primarily via $CF_3{\rightarrow}CF_2{\rightarrow}CF{\rightarrow}CF:O{\rightarrow}CO$ and $CHF_3+M{\rightarrow}CF_2+HF+M$ played an important role in oxygen-enhanced flames. When an inhibitor was added to oxygen-enriched flames, the position of the maximum concentration of active radicals was shifted to a relatively low temperature range, and the net rate of OH became higher than that of H.

The Flame Structure of Freely Propagating $CH_4$/$O_2$/$N_2$ Premixed Flames on Adding Oxygen (자유롭게 전파하는 $CH_4$/$O_2$/$N_2$ 예혼합화염에서 산소부화에 따른 화염구조)

  • Lee, Ki-Yong;Nam, Tae-Hyoung;You, Hyun-Seok;Choi, Dong-Soo
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.77-82
    • /
    • 2000
  • Numerical simulations of freely propagating flames burning stoichiometric $CH_4$/$O_2$/$N_2$ mixtures are performed at atmospheric pressure in order to understand the effect of the $O_2$ enrichment level on $CH_4$/Air flame. A chemical kinetic mechanism is employed, the adopted scheme involving 54 gas-phase species and 632 forward reactions. The calculated flame. speeds are compared with the experiments for the flames established at several $O_2$ enrichment level, the results of which is in excellent agreement. As a result of the increased $O_2$ enrichment level from 0.21 to 1, the mole fraction of CO in the burned gas is increased. The flame speed and the temperature in the burned gas are also increased, but the thickness of the flame is severely shrunken in the preheat region.

  • PDF