• Title/Summary/Keyword: 자유가속도

Search Result 101, Processing Time 0.029 seconds

A Numerical Study on Improvement in Seismic Performance of Nuclear Components by Applying Dynamic Absorber (동흡진기 적용을 통한 원전기기의 내진성능향상에 관한 수치적 연구)

  • Kwag, Shinyoung;Kwak, Jinsung;Lee, Hwanho;Oh, Jinho;Koo, Gyeong-Hoi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.1
    • /
    • pp.17-27
    • /
    • 2019
  • In this paper, we study the applicability of Tuned Mass Damper(TMD) to improve seismic performance of piping system under earthquake loading. For this purpose, a mode analysis of the target pipeline is performed, and TMD installation locations are selected as important modes with relatively large mass participation ratio in each direction. In order to design the TMD at selected positions, each corresponding mode is replaced with a SDOF damped model, and accordingly the corresponding pipeline is converted into a 2-DOF system by considering the TMD as a SDOF damped model. Then, optimal design values of the TMD, which can minimize the dynamic amplification factor of the transformed 2-DOF system, are derived through GA optimization method. The proposed TMD design values are applied to the pipeline numerical model to analyze seismic performance with and without TMD installation. As a result of numerical analyses, it is confirmed that the directional acceleration responses, the maximum normal stresses and directional reaction forces of the pipeline system are reduced, quite a lot. The results of this study are expected to be used as basic information with respect to the improvement of the seismic performance of the piping system in the future.

Numerical Analysis for Dynamic Characteristics of Next-Generation High-Speed Railway Bridge (차세대 고속철 통과 교량의 동적특성에 대한 수치해석)

  • Oh, Soon-Taek;Lee, Dong-Jun;Yi, Seong-Tae;Jeong, Byeong-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.9-17
    • /
    • 2022
  • To take into account of the increasing speed of next generation high-speed trains, a new design code for the traffic safety of railway bridges is required. To solve dynamic responses of the bridge, this research offers a numerical analyses of PSC (Pre-stressed Concrete) box girder bridge, which is most representative of all the bridges on Gyungbu high-speed train line. This model takes into account of the inertial mass forces by the 38-degree-of-freedom and interaction forces as well as track irregularities. Our numerical analyses analyze the maximum vertical deflection and DAF (Dynamic Amplification Factor) between simple span and two-span continuous bridges to show the dynamic stability of the bridge. The third-order polynomial regression equations we use predict the maximum vertical deflections depending on varying running speeds of the train. We also compare the vertical deflections at several cross-sectional positions to check the influence of running speeds and the maximum irregularity at a longitudinal level. Moreover, our model analyzes the influence lines of vertical deflection accelerations of the bridge to evaluate traffic safety.

Estmation of Magnitude of Historical Earthquakes Considering Earthquake Characteristics and Aging of a House (지진특성 및 가옥의 노후도를 고려한 역사지진의 지진규모 추정)

  • 서정문;최인길
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.1-10
    • /
    • 1998
  • The magnitudes of historical earthquake records related with house collapses are estimated considering the magnitude, epicentral distance, soil condition and aging of a house. Eighteen artificial time histories for magnitudes 6-8, epicentral distances 5 km-350 km and hard and soft soil condition were generated. Nonlinear dynamic analyses were performed for a traditional three-bay-straw-roof house. The aging effect of the house was modeled as such that the lateral loading capacity of wooden frames represented by hysteretic stiffness was decreased linearly with time. The house was idealized by one degree-of-freedom lumped mass model and the nonlinear characteristics of wooden frames were modeled by the Modified Double-Target mode. For far field earthquakes, minor damages were identified regardless of magnitude, soil condition and aging of the house. For intermediate field earthquake, earthquake magnitude greater than 6.5 caused severe damages in soil sites. For near field earthquake, severe damages occurred for magnitude greater than 6.5 regardless of soil condition and aging of the house. It is estimated that the magnitude of historical earthquakes is about 6.2. An empirical equation of magnitude-intensity relationship suitable to Korea is suggested.

  • PDF

Intelligent Hexapod robot for the support walking of the aged (고령자 보행 지원을 위한 지능형 6족 로봇)

  • Lee, Sang-Mu;Kim, Sang-Hoon
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.534-539
    • /
    • 2008
  • This paper is about intelligent hexapod robot for the support walking of the aged person. The robot using various sensors and small camera has various abilities of forward backward walking, turing left or right, control the speed of walking, avoiding the obstacles and detecting risky situation of fire or gas. To let the aged feel soft and safe walking, we used special servo motor and developed hexapod walking mechanism and effective algorithm.

  • PDF

Enhancement on 3 DoF Image Stitching Using Inertia Sensor Data (관성 센서 데이터를 활용한 3 DoF 이미지 스티칭 향상)

  • Kim, Minwoo;Kim, Sang-Kyun
    • Journal of Broadcast Engineering
    • /
    • v.22 no.1
    • /
    • pp.51-61
    • /
    • 2017
  • This paper proposes a method to generate panoramic images by combining conventional feature extraction algorithms (e.g., SIFT, SURF, MPEG-7 CDVS) with sensed data from an inertia sensor to enhance the stitching results. The challenge of image stitching increases when the images are taken from two different mobile phones with no posture calibration. Using inertia sensor data obtained by the mobile phone, images with different yaw angles, pitch angles, roll angles are preprocessed and adjusted before performing stitching process. Performance of stitching (e.g., feature extraction time, inlier point numbers, stitching accuracy) between conventional feature extraction algorithms is reported along with the stitching performance with/without using the inertia sensor data.

A Study on Dynamic Modeling and Path Tracking Algorithms of Wheeled Mobile Robot using Inertial Measurement Units (구륜 이동 로보트의 동적 모델링과 관성측정장치를 이용한 경로추적 알고리즘에 관한 연구)

  • Kim, Ki-Yeoul;Im, Ho;Park, Chong-Kug
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.10
    • /
    • pp.64-76
    • /
    • 1998
  • In this paper, we propose the dynamic modeling, path planning and tracking algorithms of 4-wheeled 2-d.o.f.(degree of freedom) mobile robot(WMR). The gaussian functions are applied to design the smooth path of WMR. To calculate the WMR position in real time, we use three components of inertial measurement units(IMU). These units have initial error because of the rotation rate of earth, gravity acceleration and so on. Therefore we derive the initial error model of IMU, and compare the fitness diagnosis about probability characteristics of real data adn estimated data. The performance of IMU with error model and Kalman filter is compared to that without filter and error model. The simulation results show that the proposed dynamic model, path planning and tracking algorithms are more useful than the conventional control algorithm.

  • PDF

Development of Miniature Cone and Characteristics of Cone Tip Resistance in Centrifuge Model Tests (원심모형실험용 소형 콘 개발 및 콘 선단저항치 특성에 관한 연구)

  • Kim, Jae Hyun;Kim, Dong Joon;Kim, Dong Soo;Choo, Yun Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.631-642
    • /
    • 2013
  • The standard CPT(Cone Penetration Test), which can be easily performed to investigate in-situ soil engineering properties, has been widely used. CPT are also widely being utilized in centrifuge model tests. In this study, a miniature cone with 10mm diameter was developed and its applicability in the centrifuge was evaluated. The developed miniature cone was equipped with a four degree-of-freedom in-flight robot. A series of cone penetration tests was performed under four centrifuge acceleration levels. As results, the cone resistances measured at the same confining stress within shallow penetration depth were affected by the centrifugal accelerations. The critical depth was proportional to the cone diameter and relative density. Cone resistances results below the critical depth and soil parameters obtained from the laboratory tests were compared with those by previously proposed empirical relations.

Drop Analysis of a Package and Cushion Performance of Drum Washing Machine (드럼 세탁기 포장재 낙하해석 및 완충 특성)

  • Kim, Chang-Sub;Bae, Bong-Kook;Sung, Do-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1733-1740
    • /
    • 2010
  • The analysis of the dynamic behavior of the packaging of a drum washing machine has been carried out under the drop impact conditions. LS-DYNA software is used for performing the finite element analysis, and the validations are performed by comparing with the impact acceleration, effective stress and deformation of cushioned package with high-speed camera during free drop test. By analyzing the cushion characteristics and the design parameters of the original packaging, a packaging with an improved design is developed, and this design is validated on the basis of the results of the distribution test which consists of drop test, vibration test, stacking test, squeez test and so on. The drop impact simulation and analysis methods developed in this study can be adopted to successfully improve the cushioning provided by the packaging and to reduce the cost involved in developing new packaging for drum washing machines.

Real Time Pose Control for the Horizontal Maintenance and driving of Mobile Inverted Pendulum (모바일 역진자의 수평유지와 주행을 위한 실시간 자세 제어)

  • Kang, Jin-Gu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.157-163
    • /
    • 2011
  • In this paper, configuration control for the Horizontal Maintenance and driving of the mobile inverted pendulum robot has been studied using ARS(Attitude Refrence System). The inverted pendulum technique is getting attention and there have been many researches on the seg-way since the US. Using its 2 freedom, a mobile inverted pendulum robot can move in various modes and Our robot performs goal reaching ARS. Mobile inverted pendulum robot fall down to the forward or reverse direction to converge to the stable point. Kalman Filter is normally used for the algorithm and numerous research is progressing at the moment. To calculate the attitude in ARS using 2 axis gyro(roll, pitch) and 3 axis accelerometers (x, y, z). In this paper we present a two wheel robot system for an autonomous mobile robot. This paper realized the robot control method which is much simpler but able to get desired performance by using the IMU and PID control.

Robust Walking Algorithm of Biped Robot on Uneven Terrain (비평탄 지형에서 이족로봇의 강인한 보행 알고리즘)

  • Lee, Bo-Hoon;Park, Jong-Han;Lee, Chang-Seok;Kim, Yong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.4
    • /
    • pp.33-39
    • /
    • 2011
  • Biped robot with high DOF has instability in mechanism. Therefore, it is important to guarantee walking stability of biped robot. Biped robot can stably walk on the flat ground using static walking patterns. However, walking stability of robot becomes increasingly worse on the uneven terrain. In the paper, we propose a robust walking algorithm of biped robot with motion stabilization to solve the problem The proposed algorithm was designed to stabilize walking motions based on the inclination of robot body using a gyro sensor and a accelerometer equipped in the center of the upper body. If unstable motions are recognized, angles of each joints are modified to increase stability by using compensation of angles of lower legs. The experimental results show that biped robot performs stable walking on the uneven terrain.