• Title/Summary/Keyword: 자원화시설

Search Result 215, Processing Time 0.024 seconds

Studies on the Main Level-Grading Factors for Establishment of LFQC (Liquid Fertilizer Quality Certification) System of Livestock Manure in Korea (가축분뇨 액비품질인증제도 구축을 위한 목표요소에 관한 연구)

  • Jeon, Sang-Joon;Kim, Soo-Ryang;Kim, Dong-Gyun;Rho, Kyung-Sang;Choi, Dong-Yoon;Lee, Myung-Gyu
    • Journal of Animal Environmental Science
    • /
    • v.18 no.2
    • /
    • pp.111-122
    • /
    • 2012
  • Establishment of the LFQC (Liquid Fertilizer Quality Certification) system is very urgent issue for recycling livestock manure as renewable resources in Korea faced with environmental problem of manure application to land due to intensive livestock farming. In this study, we investigated relevant laws and regulations on livestock manure fertilizer, certifications of eco-friendly agricultural products, government policies on livestock manure management to establish reasonable direction of Korean LFQC (Liquid Fertilizer Quality Certification) system. As a result from this study, the liquid fertilizers in 'LFQC' system could be classified as three levels according to the usage patterns in field; 1st. Individual Farm Level (IFL), 2nd. Joint Farm Level (JFL), and 3rd. Commercial Level (CML). And finally, we found some characteristics in 'Main Level-Grading Factors' of liquid fertilizer such as fertilizing value, harmfulness, stability, uniformity, economic effect, storage potential, commercial value, functionality. Those items were considered to be the key factors for the establishment of 'LFQC' system. More research on 'Evaluation Standards' for concrete guideline and on the 'Main Level-Grading Factors' be needed to complete Korean LFQC system.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Efficient Bio-gasification Facility of Pig Manure and Food Waste(II): - Results of the Precision Monitoring - (가축분뇨 병합처리 바이오가스화를 위한 설계 및 운전 기술지침 마련 연구(II) - 정밀모니터링 결과 중심으로 -)

  • Lee, Dongjin;Moon, HeeSung;Son, Jihwan;Bae, Jisu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.3
    • /
    • pp.91-98
    • /
    • 2017
  • The purpose of this study is to provide a design and operation technical guideline for meeting the appropriate design criteria to bio-gasification facilities treating organic wastes. 9 anaerobic digestion facilities which is normally operated during the field survey and 14 livestock manure farms were selected for precision investigation. the physicochemical analysis was performed on the moisture and organic contents, nutrients composition (carbohydrate, fat, protein), volatile fatty acids (VFAs), and nitrogen, etc. Volatile solids (VS) of organic wastes brought into the bio-gasification facilities were 2.81 % (animal manure only) and 5.92 % (animal manure+food waste), respectively. Total solids (TS) reults of samples from livestock farms were 5.6 % in piglets and 11~13 % in other kinds of breeding pigs. The actual methane yield based on nutrients contents was estimated to $0.36Sm^3CH_4/kgVS$ which is equivalent to 72 % of theoretical methane yield value. The optimum mixing ratio depending on the effect of the combined bio-gasification was obtained through the continuous stirred-tank reactor (CSTR) which is operated at different mixing ratio of swine manure and food waste leachate. The range of swine manure and food waste leachate from 60:40 to 40:60 were adequate to the appropriate conditions of anaerobic digestion; less than 100 gTS/, more than alkalinity of 1 gCaCO3/L, C/N ratio 12.0~30.0, etc.

Environmental impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farming system (비순환식 양액재배에서 발생하는 폐양액, 폐배지, 폐작물이 환경에 미치는 영향)

  • Park, Bounglog;Cho, Hongmok;Kim, Minsang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.1
    • /
    • pp.19-27
    • /
    • 2021
  • Hydroponic farming is a method to grow a plant without soil. Plants can be grown on water or hydroponic growing media, and they are fed with mineral nutrient solutions, which are fertilizers dissolved into water. Hydroponic farming has the advantage of increasing plant productivity over conventional greenhouse farming. Previous studies of hydroponic nutrient wastewater from acyclic hydroponic farms pointed out that hydroponic nutrient wastewater contained residual nutrients, and they were drained to a nearby river bank which causes several environmental issues. Also, previous studies suggest that excessive use of the nutrient solution and disposal of used hydroponic growing media and crop wastes in hydroponic farms are major problems to hydroponic farming. This study was conducted to determine the impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farms on the surrounding environment by analyzing water quality and soil analysis of the above three factors. Three soil cultivation farms and several hydroponic farms in the Gangwon C region were selected for this study. Samples of water and soils were collected from both inside and outside of each farm. Also, a sample of soil and leachate from crop waste piles stacked near the farm was collected for analysis. Hydroponic nutrient wastewater from acyclic hydroponic farm contained an average of 402 mg/L of total nitrogen (TN) concentration, and 77.4 mg/L of total phosphate (TP) concentration. The result of TP in hydroponic nutrient wastewater exceeds the living environmental standard of the river in enforcement decree of the framework act on environmental policy by 993.7 times. Also, it exceeds the standard of industrial wastewater discharge standards under the water environment conservation act by 6~19 times in TN, and 2~27 times in TP. Leachate from crop waste piles contained 11,828 times higher COD and 395~2662 times higher TP than the standard set by the living environmental standard of the river in enforcement decree of the framework act on environmental policy and exceeds 778 times higher TN and 5 times higher TP than the standard of industrial wastewater discharge standards under the water environment conservation act. For more precise studies of the impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farms on the surrounding environment, additional information regarding a number of hydroponic farms, arable area(ha), hydroponic farming area, seasonal, weather, climate factor around the river, and the property of the area and farm is needed. Analysis of these factors and additional water and soil samples are needed for future studies.

A Study on Medical Waste Generation Analysis during Outbreak of Massive Infectious Diseases (대규모 감염병 발병에 따른 의료폐기물 발생량 예측에 관한 연구)

  • Sang-Min Kim;Jin-Kyu Park;In-Beom Ko;Byung-Sun Lee;Sang-Ryong Shin;Nam-Hoon Lee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.4
    • /
    • pp.29-39
    • /
    • 2023
  • In this study, an analysis of medical waste generation characteristics was conducted, differentiating between ordinary situation and the outbreaks of massive infectious diseases. During ordinary situation, prediction models for medical waste quantities by type, general medical waste(G-MW), hazardous medical waste(H-MW), infectious medical waste(I-MW), were established through regression analysis, with all significance values (p) being <0.0001, indicating statistical significance. The determination coefficient(R2) values for prediction models of each category were analyzed as follows : I-MW(R2=0.9943) > G-MW(R2=0.9817) > H-MW(R2=0.9310). Additionally, factors such as GDP(G-MW), the number of medical institutions (H-MW), and the elderly population ratio(I-MW), utilized as influencing factors and consistent with previous literature, showed high correlations. The total MW generation, evaluated by combining each model, had an MAE of 2,615 and RMSE of 3,353. This indicated accuracy levels similar to the medical waste models of H-MW(2,491, 2,890) and I-MW(2,291, 3,267). Due to limitations in accurately estimating the quantity of medical waste during the rapid and outbreaks of massive infectious diseases, the generation unit of I-MW was derived to analyze its characteristics. During the early unstable stage of infectious disease outbreaks, the generation unit was 8.74 kg/capita·day, 2.69 kg/capita·day during the stable stage, and an average of 0.08 kg/capita·day during the reduction stage. Correlation analysis between generation unit of I-MW and lethality rates showed +0.99 in the unstable stage, +0.52 in the stable stage, and +0.96 in the reduction period, demonstrating a very high positive correlation of +0.95 or higher throughout the entire outbreaks of massive infectious diseases. The results derived from this study are expected to play a useful role in establishing an effective medical waste management system in the field of health care.

A study on the introduction of organic waste-to-energy incentive system(I): Precise monitoring of biogasification (유기성폐자원에너지 인센티브제도 도입방안 연구(I): 바이오가스화 정밀모니터링)

  • Kwon, Jun-Hwa;Moon, Hee-Sung;Lee, Won-Seok;Lee, Dong-Jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.67-76
    • /
    • 2021
  • Biogasification is a technology that produces environmentally friendly fuel using methane gas generated in the process of stably decomposing and processing organic waste. Biogasification is the most used method for energy conversion of organic waste with high moisture content, and is a useful method for organic waste treatment following the prohibition of direct landfill (2005) and marine dumping (2013). Due to African Swine Fever (ASF), which recently occurred in Korea, recycling of wet feed is prohibited, and consumers such as dry feed and compost are negatively recognized, making it difficult to treat food waste. Accordingly, biogasification is attracting more attention for the treatment and recycling of food waste. Korea's energy consumption amounted to 268.41 106toe, ranking 9th in the world. However, it is an energy-poor country that depends on foreign imports for about 95.8% of its energy supply. Therefore, in Korea, the Renewable Energy Portfolio Standard (RPS) is being introduced. The domestic RPS system sets the weight of the new and renewable energy certificate (REC, Renewable energy certificate) of waste energy lower than that of other renewable energy. Therefore, an additional incentive system is required for the activation of waste-to-energy. In this study, the operation of an anaerobic digester that treats food waste, food waste Leachate and various organic wastes was confirmed. It was intended to be used as basic data for preparing the waste-to-energy incentive system through precise monitoring for a certain period of time. Four sites that produce biogas from organic waste and use them for power generation and heavy gas were selected as target facilities, and field surveys and sampling were conducted. Basic properties analysis was performed on the influent sample of organic waste and the effluent sample according to the treatment process. As a result of the analysis of the properties, the total solids of the digester influent was an average of 12.11%, and the volatile solids of the total solids were confirmed to be 85.86%. BOD and CODcr removal rates were 60.8% and 64.8%. The volatile fatty acids in the influent averaged 55,716 mg/L. It can be confirmed that most of the volatile fatty acids were decomposed and removed with an average reduction rate of 92.3% after anaerobic digestion.

Characteristics of Thermophilic Methane Fermentation Using the Organic Wastes (유기성 폐기물을 이용한 고온 메탄 발효의 특성)

  • Kim, Nam-Cheon;Choi, Suk Soon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.2
    • /
    • pp.29-37
    • /
    • 2008
  • In this work, it was investigated that various aspects of process, application situation, merits and short-coming results of the thermophilic methane fermentation with highly concentrated organic waste substances such as sewage sludges, food wastes and excretions. The merits of this methane fermentation were that it had a very fast reaction rate and was possible to proceed in high loads. It was also high in mortality for pathogenic microorganism and the digested sludge was more hygienic. However, the short-comings were that more energy was required for heating in the fermentation facility, no surplus energy could be gained from low concentration of organic waste, the fermentation treatment dropped level of water quality, thus burdens discharging process of water. Especially, the high concentration of methane fermentation could possibly lack nutritious salt and could face the disturbance by ${NH_4}^+-N$, a proper alternative was required. In general, thermophilic methane fermentation was considered as a better mean in disposing of cow excretion and food waste which were highly concentrated organic wastes. On the other hand, under the condition where the concentration of waste material was low and the high concentrate waste material became higher than 3,000 mg/L in ${NH_4}^+-N$, thermophilic methane fermentation resulted less desirable outcome.

  • PDF

Efficiency of methane production from pig manure slurry using anaerobic digestor combined with compost filtration bed (퇴비단 여과상이 부착된 혐기소화조를 이용한 돈분뇨 슬러리 메탄생산 효율분석)

  • Jeong, Kwang-Hwa;Khan, Modabber Ahmed;Choi, Dong-Yoon;Lee, Dong-Hyun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.1
    • /
    • pp.53-61
    • /
    • 2013
  • The characteristics of methane production from pig manure slurry was investigated using anaerobic digestor combined with compost filtration bed. In this study, raw pig manure slurry was digested in mesophilic rectangular digester (effective volume $250m^3$) for 25 days and anaerobic digestion wastewater was filtered through compost filtration bed, which is composed of double layer, sawdust and chaff. The characteristics of anaerobic digestion wastewater were BOD 1,800 mg/L, COD 3,500 mg/L, SS 11,800 mg/L, T-N 1,200 mg/L and T-P 350 mg/L. After the filtration process, the contents of BOD, COD, SS, T-N and T-P of the anaerobic digestion wastewater were reduced by 97%, 62%, 89%, 39% and 57%, respectively. The concentrations of N, $P_2O_5$, and $K_2O$ of the leachate were 1,024, 111 and 407 mg/L, respectively. However, there was no odor emitted from the leachate.

Design Proposal for Revitalization of Yangyeongsi in Daegu (대구 약령시 재활성화를 위한 디자인제안)

  • Yun, Young-Tae;Jang, Se-In
    • Archives of design research
    • /
    • v.20 no.1 s.69
    • /
    • pp.45-54
    • /
    • 2007
  • Recent research regarding local traditions, cultural heritage, and sightseeing resources that represent local characteristics for the purpose of local promotion has been actively advanced. Yangyeongsi in Daegu, South Korea is Doing developed as a core location in order to revitalize regional culture. The unique tradition and functions of this city area have been preserved. Previous research "The Fundamental Research of Revitalization for Yangyeongsi in Daegu for the Local Promotion" undertaken by the author revealed a lack of fundamental research available to establish an understanding of how to revitalize Yangyeongsi. The research methodology designed this by, (1)a site investigation and verification of previous research (2)a deep analysis of Yangyeongsi to uncover potential improvement opportunities (3) assessment of essential elements and appropriate directions for revitalization of the traditional market (4) application of the environment design improvement process to the local design center. The design proposal is that, firstly, space assessment will De improved by the maintenance and expansion of fundamental facilities. Secondly, space application can be maximized by servicing the complex road network through a traffic flow plan. In addition, consideration for the local characteristics will promote unity and identification with the region. Lastly, revitalization and industrialization development of sightseeing resources and secure streets and event spaces will promote enjoyable experiences for visitors. Research results were submitted to the local authority and applied to the future policy plan. Continuous research on revitalization and analysis of the local characteristics are recommended in order to benefit local promotion.

  • PDF

Investigation on management conditions for vermicomposting of night soil in Field at N Sewage Water plant (N하수처리장 정화조.분뇨케익의 재활용을 위한 지렁이 사육 조건검토)

  • Kim, K.Y.;Lee, C.B.;Choi, H.G.;Phae, C.G.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.2
    • /
    • pp.102-113
    • /
    • 2000
  • This study was conducted to investigate the expandibility of sludge treatment by earthworm through real scale experiment and the optimum counter-plan for organic sludge treatment. For the purposes, sludge removal efficienciesof night-soil using earthworm and it's behavior according to the transplanting methods of the earthworm on non-cover worm bed or in the green house worm bed were compared. Sludge uptake rates on non-cover worm bed for 6 months were $0.27{\sim}0.33ton/m^2$ and the excrement of earthworm yields $0.15ton/m^2$(44.1~46.7% of raw night soil sludge dosage). These results were not much different from the worm bed in the green house. The average and maximum earthworm density were about $6.5kg/m^2$ and $7kg/m^2$ respectively on the non-cover worm bed. The density of the worm bed was comparatively higher in spring and fall terms but lower in summer. The amount of old earthworm was much plenty than young earthworm on the non-cover worm bed, resulting in reverse distribution type of pyramid. From the experiments on non-cover worm bed(7,000 pyeong)and in the green house worm bed(1,200 pyeong), it was concluded that landfill and transporting cost could be reduced when the earthworm was applied for the night-soil sludge treatment. Profits from the excrement sale of earthworm was 9,600,000 won. Through this study, it was founded that earthworm treatment method for organic sludge are much more environmentally sound than landfill treatment.

  • PDF

A Study on Environmental and Economic Analysis for Each Treatment of Sewage Sludge(II) - Results of Economic Analysis - (하수슬러지 처리방법별 환경성 및 경제성 분석에 대한 연구(II) - 경제성 분석 중심으로 -)

  • Lee, Dongjin;Lee, Suyoung;Kwon, Younghyun;Cho, Yuna;Bae, Jisu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.2
    • /
    • pp.15-29
    • /
    • 2016
  • This study investigated the environmental and economical assessment for sewage sludge treatment options including biogasification, incineration, carbonization, drying, and solidification. Considering B/C ratio for an anaerobic digestion treatment, for $270,000m^3/d$ (over $1,150m^3/day$), B/C was 1, as the moisture content increased to 95 %, B/C was 1 for $100000m^3/d$ (capacity of $400m^3/day$). Anaerobic digestion+solidification was the most economically feasible, then Anaerobic digestion+incineration and anaerobic digestion+drying were the next economically feasible and then anaerobic digestion+carbonization was the least economically feasible. If anaerobic digestion efficiency was improved to 45%, the treatment costs for anaerobic digestion+carbonization, anaerobic digestion+incineration and anaerobic digestion+drying were decreased to 3,000~5,000 won/t and the costs for anaerobic digestion+solidification was decreased to 2,000~3,000 won/t due to increasing of the beneficial cost of the biogas production.