• Title/Summary/Keyword: 자원화시설

Search Result 215, Processing Time 0.027 seconds

A Study on Investigate the Suitability of ${NH_4}^+$ Applications of Food Waste Water Instead of Urea in the Incineration of Municipal Solid Waste (생활폐기물 소각시 요구되는 요소수의 대체물질로 음식물 폐수 속의 암모니아 적용에 관한 연구)

  • Go, Sung Gyoo;Cho, Yong Kun;Lee, Young Shin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.4
    • /
    • pp.97-105
    • /
    • 2012
  • This study examined for possibility of the food wastewater incineration treatment method as one of overland treatment method by incineration through liquefied spray of food wastewater when incinerating domestic wastes under operation and for the relationship, etc of air discharge material discharged in incineration, and the results of study are as follow: The food wastewater as one of overland treatment method was analysed 94-96% of moisture contents. Temperature of incinerator outduct during mixed incineration of food wastewater with MSW was average $897^{\circ}C$ and incineration of only MSW was $925^{\circ}C$. Temperature of the mixed incineration of food wastewater was dropped about $28^{\circ}C$ by incineration of only MSW. Concentration of nitrogen oxides(NOx) among air discharge gases was studied by 50ppm, 46ppm when inputting $200{\ell}/hr$, $300{\ell}/hr$ into the incinerator as the quantity of food wastewater. In the mixed incineration of food wastewater, generation speed of scales in the inside of a tubular exhaust gas boiler became rapid and the scale generation quantity became large but the exhaust gas boiler normally operated since scales were removed in cleaning of the tube with a compressive air cleaning facility and there was no opening clogging phenomena in a filter cloth of the filtering dust collector. The overland treatment method, not ocean dumping of food wastewater can be proposed as a technology since mixed incineration of food wastewater with MSW in the existing domestic waste incineration plant is possible, and operation costs of the incineration facility were reduced since use of chemicals such as ammonia and urinary hydrogen ion excretion, etc used in incineration facilities for removing nitrogen oxides(NOx).

Investigation on Sorting Efficiency for Recyclable Materials and Its Improvement Measure at Domestic Sorting Facility (국내 재활용품 선별시설에서 선별 현황 및 개선방안)

  • Kim, Joo-Sin;Pak, Daewon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.2
    • /
    • pp.15-26
    • /
    • 2017
  • This study was conducted to investigate and analyze the discharge characteristics of recyclable material from S-city, S-district, in order to improve the sorting efficiency in recycling sorting facility. The characteristics of recyclable materials collected were analyzed in three different scopes; source origin, collection and transportation, and sorting steps. The average of recyclable waste generation is $0.121kg/day^*man$. Regional collection period appears to be three times a week, and the density of mixed recyclable wastes showed the average of $202.4kg/m^3$ in the waste collection vehicle. In the analysis into the sorting steps, the average of carrying amount of mixed recycling products is 1,154.6 ton/month, the average of appeared density is $181kg/m^3$, the average amount of separated recycling products is 448.5kg/month, and the density of recycling residue is found out to be $48kg/m^3$. The sorting rate of recyclable material is 38.85% and the percentage of residues is 55.90%. Out of 7,744.8 tons of the total recyclable residues, 4,272.1 tons were found out to be possible recylable materials. As a result of increasing the recycling rate of residues, the encouragement of base-recycling, the automation and retrofit of sorting equipment, and energy recovery from recycling residue were discussed.

Evaluation of the Development and Reduction Scheme under Implementation Plan of Total Maximum Daily Loads in the Jinwi Watershed (진위천 수계의 수질오염총량제 시행에 따른 지역개발과 삭감계획 평가)

  • Han, Mideok;Ahn, Ki Hong;Ryu, Jichul;Son, Jeeyong;Park, Bae Kyung;Kim, Young Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.6
    • /
    • pp.451-459
    • /
    • 2014
  • The development and reduction scheme under implementation plan of TMDLs were performed in the Jinwi watershed including 8 cities (Gunpo, Yongin, Suwon, Anseong, Osan, Uiwang, Pyeongtaek and Hwaseong) since 2012. Progress of the annual development schemes was faster than the reduction schemes in most of the cities during the planning period. Main load reduction methods included establishment and enlargement of sewage treatment plants, resources of livestock excretions, and introduction of best management practices of non-point source pollution. Especially, reduction load using recycling and composting of livestock excretions comprised 34.1% of all reduction load. It is necessary to implement methodical development and reduction scheme for making of successful performance of TMDLs and water quality improvement in the Jinwi watershed.

The Effect of Solubilization Pretreatment Process on Anaerobic Digestion of Waste Activated Sludge (전처리 가용화 공정이 잉여슬러지 혐기성 소화효율에 미치는 영향)

  • Yoo, Ho-Sik;Ahn, Seyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.3
    • /
    • pp.35-43
    • /
    • 2016
  • COD properties of waste activated sludge (WAS) were investigated for various solubilization rate of mechanical pretreatment method in anaerobic digestion process. Inert COD was 37.0% of total COD in untreated WAS. Particulate biodegradable COD was converted to soluble biodegradables and particulate unbiodegradables as solubilization was processed. Particulate unbiodegradable portion of COD in WAS can be increased as particulate biodegradable portion is decreased in case of relatively long SRT of biological treatment. Thus, COD properties of WAS should be investigated in case of relatively low particulate biodegradable COD, because of possible low effect of solubilization. COD removal rate in anaerobic digester was enhanced as much as 2.1% and 15.1% for solubilization rate 5% and 35% due to pretreatment, respectively. COD removal rate was increased from 25% to 40%, and methane gas generation was increased from $607m^3/d$ to $907m^3/d$ as particulate COD of WAS was solubilized to 35% in pretreatment facilities.

Economic Analysis of Livestock Manure Solid Fuel Manufacturing and Power Generation Facility (가축분뇨 고체연료 제조 및 발전시설의 경제성 분석)

  • Kim, Chang-Gyu;Yoon, Young-Man
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.2
    • /
    • pp.29-42
    • /
    • 2022
  • The government promotes the 2050 carbon-neutral policy. Therefore, the concern to convert livestock manure into energy is increasing for the reduction of greenhouse gases generated in the livestock industry sector. In this study, the economic feasibility of the livestock manure solid fuel power generation facility, which is a major consumer of livestock manure solid fuel, was assessed to expand the demand for livestock manure solid fuel. The production cost of livestock manure solid fuel showed the lowest production cost of 97.4 thousand won/ton when dried using solid fuel at a 200 ton/day scale bio-drying facility. The livestock manure solid fuel power generation facility showed economic feasibility at a REC weight of 1.5 in the case of the bio-drying facility, so it was necessary to set a REC weight of 1.5 or more to expand the demand for livestock manure solid fuel. The conversion of livestock manure into solid fuel has various environmental benefits, such as the reduction of greenhouse gases and the effect of reducing non-point pollutants in the water system. Therefore, in order to expand livestock manure solid fuel production facility, it was required to review the feasibility including various environmental benefits.

A study on inspection methods for waste treatment facilities(I): Derivation of impact factor and mass·energy balance in waste treatment facilities (폐기물처리시설의 세부검사방법 마련연구(I): 공정별 주요인자 도출 및 물질·에너지수지 산정)

  • Pul-Eip Lee;Eunhye Kwon;Jun-Ik Son;Jun-Gu Kang;Taewan Jeon;Dong-Jin Lee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.1
    • /
    • pp.69-84
    • /
    • 2023
  • Despite the continuous installation and regular inspection of waste treatment facilities, complaints about excessive incineration and illegal dumping stench continue to occur at on-site treatment facilities. In addition, field surveys were conducted on the waste treatment facilities currently in operation (6 type) to understand the waste treatment process for each field, to grasp the main operating factors applied to the inspection. In addition, we calculated the material·energy balance for each main process and confirmed the proper operation of the waste disposal facility. As a result of the site survey, in the case of heat treatment facilities such as incineration, cement kilns, and incineration heat recovery facilities, the main factors are maintenance of the temperature of the incinerator required for incineration and treatment of the generated air pollutants, and in the case of landfill facilities Retaining wall stability, closed landfill leachate and emission control emerged as major factors. In the case of sterilization and crushing facilities, the most important factor is whether or not sterilization is possible (apobacterium inspection).In the case of food distribution waste treatment facilities, retention time and odor control during fermentation (digestion, decomposed) are major factors. Calculation results of material balance and energy resin for each waste treatment facility In the case of incineration facilities, it was confirmed that the amount of flooring materials generated is about 14 % and the amount of scattering materials is about 3 % of the amount of waste input, and that the facility is being operated properly. In addition, among foodwaste facilities, in the case of an anaerobic digestion facility, the amount of biogas generated relative to the amount of inflow is about 17 %, and the biogas conversion efficiency is about 81 %, in the case of composting facility, about 11 % composting of the inflow waste was produced, and it was comfirmend that all were properly operated. As a result, in order to improve the inspection method for waste treatment facilities, it is necessary not only to accumulate quantitative standards for detailed inspection methods, but also to collect operational data for one year at the time of regular inspections of each facility, Grasping the flow and judging whether or not the treatment facility is properly operated. It is then determined that the operation and management efficiency of the treatment facility will increase.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Power generation and Stream - Design and Operation Guideline (바이오가스 이용 기술지침 마련을 위한 연구(III) - 기술지침(안) 중심으로)

  • Moon, HeeSung;Bae, Jisu;Pack, Hoyeun;Jeon, Taewan;Lee, Younggi;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.2
    • /
    • pp.95-103
    • /
    • 2018
  • As a guideline for desulfurization and dehumidification pretreatment facility for optimizing utilization of biogas, the $H_2S$ concentration is set at 150 % which can be treated with iron salts, dehumidification is the optimum value for generator operation, and the relative humidity applied at the utilization of biogas in EU is set at 60 %. We have set up the generator facility guidelines to optimize utilization of biogas. The appropriate amount of biogas should be at least 90 % of the total gas generation, and the capacity of generator facility should be set at 20~30 %. In order to equalize the pressure of the incoming gas the generator, a gas equalization tank should be installed and the generator room average temperature should be kept at $45^{\circ}C$ or less. Since the gas is not produced at a certain methane concentration in the digester, the efficiency is lowered. Therefore, it is required to install an air fuel ratio control system according to the change in methane concentration. Therefore, it is necessary to compensate for the disadvantages of biogasification facilities of organic waste resources and optimize utilization of biogas and improve operation of facilities. This study was conducted to optimize biogas utilization of type of organic waste(containing sewage sludge and food waste, animal manure), investigate the facilities problem and propose design, operation guidelines such as pre-treatment facilities and generators.

A Study on Policies to Privatize Basic Environmental Facilities in Korea (우리나라 환경기초시설의 민영화 방안 모색에 관한 연구)

  • Lee, Jae-Woong;Kim, Young-Gook;Kim, Eun-Kyu;Park, Chan-Hyuk;Choi, Deuk-Su;Chung, Jae-Chun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.4
    • /
    • pp.67-77
    • /
    • 2000
  • For successful privatization of environmental facility, a sound environmental policy is required to satisfy social motivation and economic. The primary purpose of environmental facility is not profit, but to supply a good quality service, an efficient management tool is needed to run the facility. In foreign countries, the privatization policy was originally based on the principle of complete competition achieving economic effiency. There were efficient cooperation and division of labor between civillian and public sector. First of all, the local government had independant budget. But, we found that the environmental facility have two important problems, the first is low effiency of operation and the second is comsumed to government finances as a homemade rate 50% in the technic application For a successful privatization of the environmental facility, The law of private capital introduction should be amended to promote fund raising. There are some other strategies ; overcoming of Nimbyism, research development of the privatization, field trip to the successful foreign environmental facilities. To support an efficient privatization policy, the environmental budget should be managed by cost-benefit analysis.

  • PDF

Research on Managing Incineration Facility according to Prediction of Change in Amount of Waste (폐기물 발생량 변화 예측에 따른 소각시설 운영에 관한 연구)

  • Ha, Sang An
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.1
    • /
    • pp.23-30
    • /
    • 2012
  • In the state that re-evaluation of calculating optimum amount of incineration in the future is needed, as considering the amount of waste, increase of heat value and change in floating population in each area in city B, the purpose of this research was to predict optimum available capacity in incineration plant and to study alternatives for the amount of disposal in each incineration plant based on the available capacity that was predicted. As a result of predicting the change in population based on progress of population in city B in the past, it is expected that an overall population is decreasing, but in some areas, population is concentrated due to increased apartment complexes, showing similar figures as the present. Moreover, when predicting the amount of waste through forecasting population, it is considered that the amount of waste by decreased population is also decreasing. However, the amount of combustible component among a total amount of waste is expected to increase, so it is predicted that the amount of incineration and combustible component will be reasonable except D incineration plant, Therefore, D incinerating plant showed 72.7% of rate of utilization of incineration facility compared to 59.1% of national rate. However, if shortfall of waste in the future can be used wisely in other areas, the use of renewable energy using burner useless heat can be maximized.

Study on the Measurement of GHG Emissions and Error Analysis in Form the MSW Incineration Plant Equipment with the Recovery Heat System (2009~2013) (폐열회수시설이 설비된 생활폐기물 소각자원화시설 온실가스 배출량 산정 시 오차분석 (2009~2013))

  • Choi, Won-Geun;Seo, Ran-Sug;Park, Seung-Chul
    • Journal of Environmental Science International
    • /
    • v.25 no.2
    • /
    • pp.239-246
    • /
    • 2016
  • This study aims to analyze region-specific trends in changing greenhouse gas emissions in incineration plants of local government where waste heat generated during incineration are reused for the recent five years (2009 to 2013). The greenhouse gas generated from the incineration plants is largely $CO_2$ with a small amount of $CH_4$ and $N_2O$. Most of the incineration plants operated by local government produce steam with waste heat generated from incineration to produce electricity or reuse it for hot water/heating and resident convenience. And steam in some industrial complexes is supplied to companies who require it for obtaining resources for local government or incineration plants. All incineration plants, research targets of this study, are using LNG or diesel fuel as auxiliary fuel for incinerating wastes and some of the facilities are using LFG(Landfill Gas). The calculation of greenhouse gas generated during waste incineration was according to the Local Government's Greenhouse Emissions Calculation Guideline. As a result of calculation, the total amount of greenhouse gas released from all incineration plants for five years was about $3,174,000tCO_2eq$. To look at it by year, the biggest amount was about $877,000tCO_2eq$ in 2013. To look at it by region, Gyeonggido showed the biggest amount (about $163,000tCO_2eq$ annually) and the greenhouse gas emissions per capita was the highest in Ulsan Metropolitan City(about $154kCO_2eq$ annually). As a result of greenhouse gas emissions calculation, some incineration plants showed more emissions by heat recovery than by incineration, which rather reduced the total amount of greenhouse gas emissions. For more accurate calculation of greenhouse gas emissions in the future, input data management system needs to be improved.