• Title/Summary/Keyword: 자연 유기물

Search Result 249, Processing Time 0.023 seconds

Comparative Study of Fish Community in the Urban and Nature Stream by Habitat Type (도심하천과 자연하천의 서식처 유형별 어류군집 비교)

  • Kim, Seong-Won;Lee, Jin-Hui;Jang, Chang-Ryeol;Choe, Jun-Gil
    • Proceedings of the Korean Society of Environment and Ecology Conference
    • /
    • 2011.04a
    • /
    • pp.98-103
    • /
    • 2011
  • 도심하천에서 채집된 어류는 총 7과 17종 315개체가 확인되었으며, 자연하천에서 채집된 어류는 6과 21종 1,033 개체가 조사되었다. 도심하천에서 출현한 한국 고유종은 치리(Hemiculter eigenmanni)와 얼룩동사리(Odontobutis interrupta) 2종(11.8%)이었으며, 생태계교란야생동물에 속하는 종인 배스(Micropterus salmoides)가 폐쇄형 하도습지에서 출현하였다. 자연하천에서 출현한 한국고유종은 쉬리 (C. splendidus), 배가사리(Microphysogobio longidorsalis) 등 총 13종(61.9%)으로 고유종의 빈도가 높았고, 멸종위기 II급에 속하는 종인 묵납자루(A. signifer)와 가는돌고기(Pseudopungtungia tenuicorpa) 등 2종(9.5%)이 조사되었다. 두 하천의 군집분석을 비교한 결과 도심하천이 자연하천에 비해 우점도와 균등도 지수가 높게 나왔다. 이와 같은 결과는 도심하천과 자연하천이 같은 유형의 서식처이지만 도심하천의 경우 양안 수변대와 제방구축, 하천정비, 고수부지의 시멘트화 등의 원인과 오염원의 유입, 풍부한유기물 때문인 것으로 판단된다.

  • PDF

Analysis of the Organic Matter Content for Soil Samples Taken at the New Points of Korea Soil Quality Monitoring Network (토양측정망 확대 지점의 토양 유기물 함량 연구)

  • Lee, Sojin;Kim, Jinjoo;Jeong, Seung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.12
    • /
    • pp.641-646
    • /
    • 2016
  • Soil organic matter (SOM) is an important soil component releasing nutrients to the plants and reducing risks of soil contamination to the human and ecosystem. Much attention has been recently paid to SOM investigation and management because SOM holds the most of carbon in the earth and sequestrate carbon as a sink tank. The first objective of the study was to investigate SOM of 495 soil samples taken at the Korea Soil Quality Monitoring Network. Soil samples were collected from 16 regions and 8 land use types. The second objective of the study was to find a relationship between the Tyurin method and loss-on-ignition (LOI) method for SOM. The means of SOM by Tyurin and LOI methods were 1.90 and 2.92 % (w/w), respectively. Land uses such as forest, religious area and park where organic matters continuously supply to normally showed higher SOMs than residential and school areas having sandy soils. A regression equation of the relationship between Tyurin and LOI methods was y(Tyurin) = 0.6257x(LOI) + 0.0602 (P-value < 0.001). The coefficient of determination was $R^2=0.749$, relatively linearly related. Although LOI may result in higher SOMs than the Tyurin method, LOI may be a preference for the SOM investigation if various kinds of land uses and many soil samples should be measured.

Retention properties of organic matters and nutrients in wetland soils and coastal sediments (습지토양 및 연안퇴적물의 유기물질 및 영양물질 보유 특성)

  • Park, Soyoung;Yi, Yong Min;Yoon, Han-Sam;Sung, Kijune
    • Journal of Wetlands Research
    • /
    • v.14 no.2
    • /
    • pp.265-275
    • /
    • 2012
  • As climate change is becoming a growing concern and the importance of water management is increasing, the retention of carbon and nutrients in wetland soils including inland and coastal area has become important. In this study, retention characteristics of organic matter and nutrients of coastal sediment and soils in different types of wetlands such as constructed wetland, natural (inland marsh, estuary, tidal flat) wetlands were investigated. A correlation analysis was also performed to understand the relationship among organic matter properties, nutrient concentrations and soil texture of wetland soils. The degree of retention of organic matter and nitrogen in wetland soils varied with the wetland type. Inland wetlands retain more nitrogen than estuary or coastal wetlands, and natural wetlands retain more organic matter and nitrogen than constructed ones. Coastal sediments in a bay area where seawater circulation is restricted have more nutrients than those in estuary or tidal flats where seawater circulates well. The results showed that the sediment chemical oxygen demand has a high correlation with the total organic carbon and the total nitrogen in the studied area.

Comparison of Partial Least Squares and Support Vector Machine for the Autoignition Temperature Prediction of Organic Compounds (유기물의 자연발화점 예측을 위한 부분최소자승법과 SVM의 비교)

  • Lee, Gi-Baek
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • The autoignition temperature is one of the most important physical properties used to determine the flammability characteristics of chemical substances. Despite the needs of the experimental autoignition temperature data for the design of chemical plants, it is not easy to get the data. This study have built and compared partial least squares (PLS) and support vector machine (SVM) models to predict the autoignition temperatures of 503 organic compounds out of DIPPR 801. As the independent variables of the models, 59 functional groups were chosen based on the group contribution method. The prediction errors calculated from cross-validation were employed to determine the optimal parameters of two models. And, particle swarm optimization was used to get three parameters of SVM model. The PLS and SVM results of the average absolute errors for the whole data range from 58.59K and 29.11K, respectively, indicating that the predictive ability of the SVM is much superior than PLS.

분리막을 이용한 실험실용 초순수제조장치 SUPERANE UPS-2000의 개발

  • 구성희;김정학
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1993.10a
    • /
    • pp.75-76
    • /
    • 1993
  • 자연수에는 무기이온, 용해유기물, 미립자, 미생물과 같은 성분들이 혼재되어 있다. 일반실험실에서 사용하는 증류수, RO수 또는 이온교환수는 실험용 기구 세척수, 일반 정성화학 실험 등에는 적당하지만, 최근 급속히 발전하는 생명공학의 조직배양용이나 PHLC, AAS, 이온크로마토그래피 등 정밀분석기기 용수로는 부적당하다.

  • PDF

Investigation of Photocatalytic Process on Removal of Natural Organic Matter in Nanofiltration Process (광촉매 공정에 의한 유기물 제거가 나노여과 공정에 미치는 영향)

  • Lee, Kew-Ho;Choi, In-Hwan;Kim, In-Chul;Min, Byoung-Ryul
    • Membrane Journal
    • /
    • v.17 no.3
    • /
    • pp.244-253
    • /
    • 2007
  • This research investigated the effect of a photocatalytic reaction on nanofiltration(NF) membrane fouling by natural organic matter(NOM). The photocatalytic degradation was very effective for destruction and transformation of NOM and was carried out by titanium dioxide($TiO_2$) and $TiO_2$-immobilized bead as a photocatalyst. In order to compare their phtocatalytic properties, the photocatalytic degradation of humic acid in the presence of calcium ion was used as a model reaction. After the photocatalytic degradation the membrane fouling was dramatically decreased.

Removal of NOM in a Coagulation Process Enhanced by Modified Clay (개질 Clay를 첨가한 응집공정에서의 자연유기물 제거)

  • Park, Ji-Hye;Lee, Sang-Yoon;Park, Hung-Suck
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.1
    • /
    • pp.37-46
    • /
    • 2007
  • A feasibility test was conducted to evaluate the addition of turbidity substance in a coagulation process to remove natural organic matters (NOM), the precursor of disinfection by-products (DBPs). The experimental water sources were synthetic water containing 5 mg/L of humic acid and 50 mg/L of NaHCO3 and drinking water resource of Ulsan city (S Dam water, D Dam water and Nak-Dong raw water). The examined turbidity substances were kaolin, acid clay, and modified clay (0.38 meq $NH_4{^+}-N/g$ clay). In Jar tests at different concentrations of the turbidity substances (5, 10, 15, 20, 30 mg/L) using the synthetic water, the turbidity substances improved the removal of turbidity, UV-254 absorbance and dissolved organic carbon (DOC) by 23.8-38.1%, 17.0-24.5% and 2.5-44.5%, respectively. The modified clay showed higher removal efficiencies than other substances. In Jar tests using the drinking water, 10 and 20 mg/L of modified clay enhanced the removal efficiencies of turbidity, UV-254 absorbance, DOC, trihalomethane formation potential (THMFP), and haloacetic acid formation potential (HAAFP) by 3.0~4.3%, 19.1~29.0%, 12~34.9%, 4.9~36.7%, and 1.6~30.2%, respectively.

Behavior of Refractory Organic Matter in Leachate from Landfill Contaminated by Foot-and-mouth Disease (구제역 매몰지역 침출수에서 발생하는 난분해성 유기물질 거동)

  • Kang, Meea;An, Yaesol
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.427-434
    • /
    • 2013
  • The leachate from landfill (Andong city) contaminated by foot-and-mouth disease (FMD) contains 44%-50% hydrophilic organic matter, compared with 22%-27% in natural water bodies such as ground water, lake water, and river water. In such natural water, the organic matter content is reduced by the metabolism of microbes in the water. However, in the case of leachate-1 and -2, the concentrations of RTOC (refractory total organic carbon) and RDOC (refractory dissolved organic carbon) were higher than the initial TOC and DOC after burial. According to time elapsed after burial, the concentrations of RTOC and RDOC were decreased below the initial TOC and DOC. In the case of leachate-6 (386 days after burial), RDOC made up 91% of RTOC. This result shows that organic matter in the leachate was composed dominantly of RDOM, most of which was not removed by the metabolism of microbes. Hence, the presence and characteristics of RDOM provide a valuable indication of the effect of leachate on the quality of surface water and ground water. Such information is useful in understanding leachate environments.

A Study on Transport Characteristics of CMC-modified Zero Valent Iron (ZVI) Nanoparticles in Porous Media (다공성 매질내에서 CMC로 표면개질된 영가철 나노입자의 이동 특성에 관한 연구)

  • Cho, Yun-Chul;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.6
    • /
    • pp.101-107
    • /
    • 2009
  • Carboxymethyl cellulose (CMC) as stabilizer is expected to facilitate in-situ delivery of zero-valent iron (ZVI) nanoparticles in a contaminated aquifer because it increases dispersity of ZVI nanoparticles. This work investigated the transport of CMC-stabilized ZVI nanoparticles (CMC-Fe) using column breakthrough experiments. The ZVI nanoparticles (100 mg/L Fe) were transportable through sand porous media. In contrast, non-stabilized ZVI nanoparticles rapidly agglomerate in solution and are stopped in sand porous media. At pH 7 of solution approximately 80% CMC-Fe were eluted. When the pH of solution is below 5, 100% CMC-Fe were eluted. These results suggest that the mobility of CMCFe was increased as pH decreases. In the mobility test under different ionic strengths using $Na^+$ and $Ca^{2+}$ ions, there was no signigficant difference in the mobility of CMC-Fe. Also, in the experiments of effect of clay and natural organic mater (NOM) on the mobility of ZVI, there was no significant difference in the mobility of CMC-Fe not only between 1 and 5% clay, but 100 and 1000 mg/L NOM. The results from this work suggests that the CMC-Fe nanoparticles could be easily delivered into the subsurface over a broad range of ionic strength, clay and NOM.