• Title/Summary/Keyword: 자연하천

Search Result 1,580, Processing Time 0.042 seconds

Effects of β-glucan and Xanthan gum-based Biopolymers on Plant Growth and Competition in the Riverbank (제방 환경 조건에서 베타글루칸-잔탄검 계열 바이오폴리머가 식물 생장 및 경쟁에 미치는 영향)

  • Jeong, Hyungsoon;Shin, Haeji;Jang, Ha-young;Kim, Eunsuk
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.3
    • /
    • pp.208-217
    • /
    • 2020
  • A biopolymer based on microorganism-derived β-glucan and xanthan gum is being studied as a new eco-friendly material that stabilizes the riverbank slope, and also promotes vegetation growth. However, it is still inconclusive whether biopolymers have a positive effect on plant performance in the riverbanks which are subjected to various climatic factors and plant competitions. For a practical ecological evaluation of the biopolymers, their effect on plant growth promotion was studied in a natural environment. Considering the relationship between competition and plant community formation, the effects of biopolymers on competition were also investigated. For four plant species (Echinochloa crus-galli, Pennisetum alopecuroides, Leonurus japonicus, and Coreopsis lanceolata), the biopolymer effects under intra/interspecific competition were tested at the riverbank (20 m × 10 m) near Samjigyo Bridge in Damyang-gun, Jeollanam-do. A biopolymer powder was mixed with water and commercial soil following the manufacturer's recommendations. The soil mixed with the biopolymer was filled in a pot or applied to the surface of the commercial soil with a thickness of 3 cm. Across the competition treatments, the biopolymer treatment promoted root growth of the target plant species and decreased the specific leaf area. The total biomass and shoot dry weight of P. alopecuroides increased in response to the biopolymer treatment. The competition treatment decreased the total biomass and shoot dry weight compared to the case without competition. Notably, such a competitive effect was similar in all the biopolymer treatments. Thus, biopolymers, when mixed with soil, promote the growth of some plant species, but do not appear to affect the competitive ability of plants.

Seasonal Variations of Environmental Factors and Distribution of Anabaena cylindrica Growth-Inhibiting Bacteria in the Lower Daechung Reservoir (대청호 하류에서 환경요인과 Anabaena cylindrica 생장억제세균의 계절별 분포 변화)

  • Lee, Jung-Ho;Kim, Chul-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.2 s.90
    • /
    • pp.128-135
    • /
    • 2000
  • The authors surveyed the seasonal variations of environmental factors, the distributions of heterotrophic bacteria and Anabaena cylindrica growth-inhibiting bacteria at each water layer in Daechung Reservoir to verify the role of bacteria during the extinction of bloom. Average water depth at site 1, 2, and 3 were 25.5 m, 15.0 m and 12.3 m, respectively. Water temperature showed a typical pattern seasonally. The variation of DO was relatively inverse proportional to that of water temperature, although it was irregular during summer time. DO decreased gradually to early May, fluctuated sharply after then, and followed by gradual increasement after middle of September. This variation pattern was notable at surface layer. There was remarkable difference in DO concentraion between surface layer and the other water layers during the period in which DO irregulary varied. The variation range of chlorophyll-a concentraion at surface layer in summer time was broad, and it was relatively high when DO was high. The population size of heterotrophic bacteria was high from Spring to Autumn, an declined after September when the water temperature droped rapidly. Especially this variation pattern was prominent at the surface layer. Bacteria that inhibit the growth of A. cylindrica was almost not detected by June, and its distribution increased in July. Afterward, it showed different variation pattern between each site. The distribution of A. cylindrica growth-inhibiting bacteria was higher at the middle and bottom layer than the surface layer in July and October, when it was larger at all sites for the study period. This result suggests that the antagonistic bacteria exhibit higher activity when host activity drops. These results also suggest that natural water bacteria control the distirbution of cyanobacteria, especially its activity as controller is remarkable when cyanobacterial growth declines.

  • PDF

Prediction Model of Pine Forests' Distribution Change according to Climate Change (기후변화에 따른 소나무림 분포변화 예측모델)

  • Kim, Tae-Geun;Cho, Youngho;Oh, Jang-Geun
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.4
    • /
    • pp.229-237
    • /
    • 2015
  • This study aims to offer basic data to effectively preserve and manage pine forests using more precise pine forests' distribution status. In this regard, this study predicts the geographical distribution change of pine forests growing in South Korea, due to climate change, and evaluates the spatial distribution characteristics of pine forests by age. To this end, this study predicts the potential distribution change of pine forests by applying the MaxEnt model useful for species distribution change to the present and future climate change scenarios, and analyzes the effects of bioclimatic variables on the distribution area and change by age. Concerning the potential distribution regions of pine forests, the pine forests, aged 10 to 30 years in South Korea, relatively decreased more. As the area of the region suitable for pine forest by age was bigger, the decreased regions tend to become bigger, and the expanded regions tend to become smaller. Such phenomena is conjectured to be derived from changing of the interaction of pine forests by age from mutual promotional relations to competitive relations in the similar climate environment, while the regions suitable for pine forests' growth are mostly overlap regions. This study has found that precipitation affects more on the distribution of pine forests, compared to temperature change, and that pine trees' geographical distribution change is more affected by climate's extremities including precipitation of driest season and temperature of the coldest season than average climate characteristics. Especially, the effects of precipitation during the driest season on the distribution change of pine forests are irrelevant of pine forest's age class. Such results are expected to result in a reduction of the pine forest as the regions with the increase of moisture deficiency, where climate environment influencing growth and physiological responses related with drought is shaped, gradually increase according to future temperature rise. The findings in this study can be applied as a useful method for the prediction of geographical change according to climate change by using various biological resources information already accumulated. In addition, those findings are expected to be utilized as basic data for the establishment of climate change adaptation policies related to forest vegetation preservation in the natural ecosystem field.

Characteristics of Fish Community in Gap Stream by Habitat Type (서식처 유형에 따른 갑천의 어류군집 특성)

  • Lee, Dong-Jun;Byeon, Hwa-Kun;Choi, Jun-Kill
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.3
    • /
    • pp.340-349
    • /
    • 2009
  • The natural type section of Gap Stream was divided into 7 sites, such as, closed pool, runs, riffle, opened pool, pool, reek-scattered riffle, and Dam-type pool. The ecological characteristics of fish community at each site was examined from April, 2007 to October, 2008. During the survey period, 29 species belonging to 8 families were collected, and Carassius auratus (St. 1), Coreoleuciscus splendidus (St. 3), Acheilognathus lanceolatus (St. 4) and Zacco platypus (St. 2, 5, 6, 7) were characteristic species that represent each habitat. The species of C. auratus preferred physical habitat with sand-bottom pool, moderate depth of 65$\sim$90 cm, and stagnant water. The species of C. splendidus mainly preferred physical habitat with cobbles and pebbles are scattered riffles (St. 3), moderate depth of 65$\sim$90 cm, and flow velocity is 0.14$\sim$0.85 m $sec^{-1}$. It also preferred where concentration of BOD, COD, TN, TP and SS is low and DO's value is high, because the flow velocity is fast. A. lanceolatus preferred where the depth of water is low (3$\sim$44 cm) like an opened pool (St. 4) and the flow velocity is slow (0.01$\sim$0.02 m $sec^{-1}$). Z. platypus dominated in a variety of habitats such as runs (St. 2), pool (St. 5), rock-scattered riffles (St. 6) and D-type pool (St. 7), and it preferred places where flow is abundant and riverbed structure is diverse. On the other hand, 4 individuals of Iksookimia choii appeared at reek-scattered riffles (St. 6). I. choii appeared in this research lived in where the width of river is 24 m, the depth of water is 3$\sim$35 cm and the flow velocity is 0.01$\sim$0.49 m $sec^{-1}$, and riverbed structure was diversely formed with boulder to sand. Also, water temperature, EC, BOD, COD, TN and TP was low, but concentrations of DO and SS were high comparatively. Therefore, it seems that I. choii can live only in physical and chemical environment with similar conditions.

Community Distribution on Forest Vegetation of the Namdeogyusan Area in the Deogyusan National Park, Korea (덕유산 국립공원 남덕유산 일대 삼림식생의 군락분포에 관한 연구)

  • Oh, Jang-Geun;Kim, Chang-Hwan;Kang, Eun-Ok;Gin, Yu-Ri
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.440-448
    • /
    • 2013
  • Forest vegetation of Namdeogyusan (1,507 m) in Deogyusan National Park is classified into mountain forest vegetation and flatland forest vegetation. Mountain forest vegetation is subdivided into deciduous broad-leaved forest, valley forest, coniferous forest, afforestation and other vegetation. Including 45 communities of mountain forest vegetation and 8 communities of other vegetation, the total of 53 communities were researched; mountain forest vegetation classified by physiognomy classification are 22 communities deciduous broad-leaved forest, 11 communities of valley forest, 5 communities of coniferous forests, 7 afforestation and 8 other vegetation. As for the distribution rate for surveyed main communities, Quercus mongolica, Quercus serrata and Quercus variabilis communities account for 79.30 percent of deciduous broad-leaved forest, Fraxinus mandshurica community takes up 82.96 percent of mountain valley forest, Pinus densiflora community holds 53.31 percent of mountain coniferous forest holds. In conclusion, minority species consisting of Quercus mongolica, Fraxinus mandshurica, Quercus serrata, Pinus densiflora, and Quercus variabilis are distributed as dominant species of the uppermost part in a forest vegetation region in Deogyusan National Park. In addition, because of vegetation succession and climate factors, numerous colonies formed by the two species are expected to be replaced by Quercus mongolica, Carpinus laxiflora and Fraxinus mandshurica which are climax species in the area.

The Egg Development of Korean Slender Gudgeon, Squalidus gracilis majimae (Cypriniforms: Cyprinidae) (한국산 긴몰개 (Squalidus gracilis majime, Cyprinidae)의 난발생)

  • Park, Kyung-Seo;Hong, Young-Pyo;Moon, Woon-Ki;Choi, Shin-Suk;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.1 s.110
    • /
    • pp.73-82
    • /
    • 2005
  • This study was conducted, based on the field survey and laboratory observations, to elucidate egg developmental processes and their characteristics of the Korean slender gudgeon, Squalidus gracilis majimae. For the experiments, the mature adults were collected at the Woongcheon-Cheon Stream and Boreung Reservoir located in Boreung City, Chungnam Province and eggs were obtained from the natural spawning area. Morphological characteristics of the egg and embryonic development were summarized as follows: The shape of the fertilized egg was spherical, adhesive and transparent. The fertilized egg was 2.9${\pm}$0.3 mm (n = 30) in mean diameter under water temperature of $26{\pm}1.5^{\circ}C$, light white in color and had no oil droplets. After 20 minutes from the time of fertilization, a blastodisc was formed and divided into two cells at 48 minutes after fertilization. The blastular stage occurred at 5 hours 40 minutes after fertilization and the gastrular stage was detected at 8 hours 41 minutes after fertilization. The beginning of embryo formation was observed at 12 hours 58 minutes after fertilization and optic vesicles and 9 somites were discovered at 17 hours 05 minutes after fertilization. Differentiation of brains and embryo wiggling were observed at 37 hours 27 minutes after fertilization. Heart beating and the formation of melanophores in optic vesicles were detected at 44 hours 46 minutes after fertilization. The formation of pectoral fins and melanophores in the body were discovered at 50 hours 36 minutes after fertilization. Hatching occurred at 57 hours 49 minutes after fertilization. The newly hatched larvae were 3.3${\pm}$0.2 mm (n = 120) in total length. We believe that these results may contribute the species and population conservations under the situation of accelerated water pollution and the decreases of its diversity.

Population Structure and Habitat Characteristics of Deutzia paniculata Nakai, as an Endemic Plant Species in Korea (한반도 특산식물 꼬리말발도리 개체군 구조 및 서식지 특성)

  • Jung, Ji-young;Pi, Jung-hun;Park, Jeong-geun;Jeong, Mi-jin;Kim, Eun-hye;Seo, Gang-Uk;Lee, Cheul-ho;Son, Sung-won
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.1
    • /
    • pp.31-41
    • /
    • 2016
  • Deutzia paniculata is an endemic species to the Korean Peninsula. Despite of importance for conservation, the population structure and habitat characteristics of D. paniculata have not been determined yet. We analyzed the ecological characteristics of the species based on the literature review and field survey. Field survey was conducted on May to October 2014 during which 11 quadrats of size $15{\times}15m$ were studied in six regions. Each of the quadrats were further divided into $5{\times}5m$ small quadrats and population characteristics were recorded. The population and habitat characteristics were analyzed, including species abundance (density and coverage), demographic attributes (flowering rates and fruiting plants), vegetation (structure, species composition), light availability (transmitted light and canopy openness) and soil characteristics (temperature and humidity). We found that D. paniculata mainly distributed in Gyeongsangdo (including Taebaek in Gangwondo) along a broad elevational range of 290~959 m (mean: 493 m) above sea level. In preferred habitat the species grows within the slope range of $7^{\circ}$ and $35^{\circ}$ with the average of $16^{\circ}$. D. paniculata was generally distributed on talus deposits and low adjacent slopes. The average number of individual plants per small quadrat was 12.5 with the mean density $0.5stems\;m^{-2}$. The vegetative reproduction was frequent in D. paniculata and mean flowering rate was as low as 15%. Altogether 138 taxa were found in whole observation area with the dominant tree species mainly spring ephemerals, such as Cornus controversa (importance value: 25.5%) and Fraxinus rhynchophylla (importance value: 15.8%). Although, C. controversa usually grows on steep slopes and F. rhynchophylla mostly distributed at high-altitudes, however, both species distributed in disturbed environments and among talus deposits. Thus based on our results, we concluded that D. paniculata is a disturbance-prone species, primarily existing in habitats subjected to natural disturbances, such as floods. The species occurs less at anthropogenically disturbed sites, thus there is no apparent threat to the populations and habitat of D. paniculata.

A Study on the Forest Vegetation of Deogyusan National Park (덕유산 국립공원 삼림식생에 관한 연구)

  • Kim, Chang-Hwan;Oh, Jang-Geun;Lee, Nam-Sook
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.33-40
    • /
    • 2013
  • From March 2012 to January 2013, this study was conducted as a part of the project for making a precise electronic ecological zoning map of vegetation on a highly reduced scale of 1 to 5,000 with a view to improving management efficiency of national parks and enlarging the availability of the data produced from the basic research monitoring the resources of national parks. For the research accuracy and rapidity, a vegetation map was specially created for the on-the-site-vegetation research. To make the map more meticulous, we categorized the vegetation database into five groups: broadleaved forest, coniferous forest, mixed forest, rock vegetation and miscellaneous one. After comparing the results of the data built for the vegetation research and the actual research findings, it was made clear that vegetation of both categories was almost the same in case of broad-leaved forest with 72.20% and 78.45% respectively, and also equivalent in other groups like, for example, coniferous forest (16.70%, 13.41%), mixed forest (9.50%, 7.49%) and rock vegetation (0.60%, 0.15%). According to the precise vegetation map produced from the research, the deciduous broad-leaved forest was the most widely prevalent type in the correlated hierarchical classification of vegetation, occupying 65.78% of the overall vegetation. It was followed by mountain valley forest (15.17%), coniferous forest (10.90%), and plantation forest (7.00%) in order. It is particularly noteworthy that Mt. Deogyusan national park has retained a very stable and versatile forest vegetation in the outstanding state since approximately 20% of the mountain turns out to belong to the I grade vegetation conservation classification which contains climax forests, unique vegetation, subalpine vegetation, matured stands which are older than 50 years and etc.

Salinity Effects on Growth and Yield Components of Rice (관개용수내 염분농도가 벼 생육 및 수량에 미치는 영향)

  • Choi, Sun-Hwa;Kim, Ho-Il;Ahn, Yeul;Jang, Jeon-Ryeol;Oh, Jong-Min
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.2 s.107
    • /
    • pp.248-254
    • /
    • 2004
  • This study was conducted to investigate the effects of salinity in irrigation water on the growth, yield components, yield and grain quality of rice plant by the pot experiments. Irrigation waters were supplied with control and amended with NaCl at 1,000, 2,000, 3,000, 5,000, and 7,000 ${\mu}s\;cm^{-1}$ electrical conductivity. A randomized block design was used with four replicates for each treatment and control. As increasing salt concentration, plant height, tiller number, SPAD value, dry weight, content of N, P, and K, ripened grain ratio (%), 1,000 grain weight, and protein content (%) tended to decrease, especially, significant at 3,000 ${\mu}s\;cm^{-1}$ of salt level. Grain yield decreased significantly at all treatments. The percentage of head rice slightly tended to increase as the salt concentration due to the decrease of green kernel. The percentage of green kernel was significantly lower at 3,000 ${\mu}s\;cm^{-1}$ of salt level than the control.

A Study on the Forest Vegetation of Odaesan National Park, Korea (오대산국립공원 삼림식생에 관한 연구)

  • Kim, Chang-Hwan;Oh, Jang-Geun;Lee, Nam-Sook;Choi, Young-Eun;Song, Myoung-Jun
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.61-67
    • /
    • 2015
  • This study, which was conducted from Apr. 2013 to Jan. 2014, was carried out as part of a project of making a more detailed ecological zoning map with 1/5,000 scale. The necessity of electronic vegetation map with large scale has arisen in order to make the best use of basic research findings on resource monitoring of National Parks and to enhance efficiency in National Park management. In order to improve accuracy and speed of vegetation research process, the data base for vegetation research was categorized into five groups, namely broad-leaved forest, coniferous forest, mixed forest, rock vegetation and miscellaneous one. And then a vegetation map for vegetation research was created for the research on the site. What is in the database for vegetation research and the vegetation map reflecting findings from vegetation research showed similar distribution rate for broad-leaved forest with 71.965% and 71.184%, respectively. The distribution rate of coniferous forest (16.010%, 15.747%), mixed forest (10.619%, 12.085%), and rock vegetation (0.015%, 0.002%) did not have much difference. In a detailed vegetation map reflecting vegetation research findings, the broad-leaved mountain forest was the most widely distributed with 60.096% based on the physiognomy classification. It was followed by mountain coniferous forest (16.332%), mountain valley forest (15.887%), and plantation forest (3.558%) As for vegetation conservation classification evaluated in the national park, grade I and grade II areas took up 200.44 km2, 61.80% and 108.80 km2, 33.55% respectively. The combined area of these two amounts to 95.35%, making this area the first grade area in ecological nature status. This means that this area is highly worth preserving its vegetation. The high rate of grade I area such as climax forests, unique vegetation, and subalpine vegetation seems to be attributable to diverse innate characteristics of Odaesan National Park, high altitude, low level of artificial disturbance, the subalpine zone formed on the ridge of the mountain top, and their vegetation formation, which reflects climatic and geological characteristics, despite continuous disturbance by mountain climbing.