• Title/Summary/Keyword: 자연유기물

Search Result 249, Processing Time 0.025 seconds

Use of Light Emitting Diode for Enhanced Activity of Sulfate Reducing Bacteria in Mine Drainage Treatment Process Under Extreme Cold (혹한기 광산배수 처리 공정 내 황산염 환원 박테리아의 활성 증진을 위한 발광다이오드의 이용 제안)

  • Choi, Yoojin;Choi, Yeon Woo;Lee, An-na;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.50 no.3
    • /
    • pp.251-256
    • /
    • 2017
  • This study presents measures to enhance the efficiency of Successive Alkalinity Producing Systems(SAPS), a natural biological purification method that prevents environmental pollution arising from the release of Acid Mine Drainage(AMD) from abandoned mines into rivers and groundwater. The treatment of AMD using SAPS is based on biological processing technology that mostly involves sulfate reducing bacteria(SRB). It has been proven effective in real-world applications, and has been employed in various projects on the purification of AMD. However, seasonal decrease in temperature leads to a deterioration in the efficiency of the process because sulfate-reducing activity is almost non-existent during cold winters and early spring even if SRB is able to survive. Against this backdrop, this study presents measures to enhance the activity of the SRB of the organic layer by integrating light emitting diode(LED)s in SAPS and to maintain the active temperature using LEDs in cold winters. Given that mine drainage facilities are located in areas where power cannot be easily supplied, solar cell modules are proposed as the main power source for LEDs. By conducting further research based on the present study, it will be possible to enhance the efficiency of AMD treatment under extreme cold weather using solar energy and LEDs, which will serve as an environmentally-friendly solution in line with the era of green growth.

Physical and Chemical Properties of Cover Soils of waste Landfills in Kyonggi-Do Area (경기도 지역 쓰레기 매립지 복토층 토양의 이화학성)

  • 이상모;김기대;이은주;김판기;이군택
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.1
    • /
    • pp.53-62
    • /
    • 2002
  • The physical and chemical properties of cover soils of 10 waste landfill sites in Kyonggi-Do area, where social circumstances at present forces to consider the reuse of landfill, were investigated to provide the informations of soil environment which are necessary to establish the appropriate ecological restoration plan of waste landfills. The pH and electrical conductivity of soils were higher in landfills sites than in reference sites (area around landfill sites), indicating the salt accumulation in surface soil. However, total-N and organic matter contents were lower in landfills sites than in reference sites. In landfill sites, the total-N and plant available-P contents were less than 0.15% and 20mg/kg, respectively. Exchangeable cations (K, Ca, Mg and Na) and heavy metal (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) contents varied between the landfill sites, but were higher in landfills sites than in reference sites. The major exchangeable cation of soil was Ca. Heavy metal contents were much lower than the critical concentration which phytotoxicity is considered to be possible and the standard for agricultural land of Korean Soil Environmental Preservation Act. Therefore, the proper soil management plan to increase the soil fertility is recommended for the ecological restoration of landfill using natural or artificial vegetation.

Evaluation of Temporal and Spatial Variations of Water Quality at the Streams Flowing into the Suncheon Bay (순천만 유입수계의 시.공간적 수질환경 평가)

  • Park, Sang-Jin;Cheong, Cheong-Jo
    • Journal of Wetlands Research
    • /
    • v.15 no.3
    • /
    • pp.329-337
    • /
    • 2013
  • This study was performed to evaluate the temporal and spatial variations of the water quality at stream flowing into the Suncheon bay in Suncheon city from October 2008 to August 2009 and to estimate the pollutant sources from the streams using multivariate analysis. Water qualities from Seo stream, Dong stream, Ok stream were evaluated as I grade(very good) that compared to the Water Quality Standard. But Haeryong stream and inlet site of Suncheon Bay in BOD were evaluated as a little bad and fair. Water quality at the stream flowing into the Suncheon Bay was could be explained up to 92.8% by three factors which were included in loading of nutrients, organic matter and total coliform group by the allochthonous matters(53.7%), Topographic Factors(25.0%), seasonal variation(14.2%). The concentrations of total nitrogen and phosphorus at sewage treatment plant and organic matters at Haeryong stream were higher than that of others, respectively. From principal component analysis and factor analysis, it could be suggested that it is very important to make an effort to reduce the nutrients and organic matters from sewage treatment plant and Haeryong stream to be in good conservation of the Suncheon bay.

Consideration on the Scientific Analysis of Ancient Soil (고대 토양의 과학적 분석에 대한 고찰)

  • Seo, Min-Seok;Kim, Min-Hee;Chung, Yong-Jae
    • Korean Journal of Heritage: History & Science
    • /
    • v.37
    • /
    • pp.309-326
    • /
    • 2004
  • There are some methods such as fatty acid analysis and microscope analysis of parasite egg and pollen and genetic analysis of ancient bacteria from ancient soil. The fatty acid analysis can examine whether some materials is human feces or animals. This is important thing to reconstruct ancient toilet culture pattern. The methods using TLC and GC-MS as organic chemistry is able to confirm ancient diet life style and nutritive conditions. The microscope analysis of ancient soil is able to confirm ancient parasite egg and pollen. It is possible to analogize ancient human diseases from this analysis. Also, genetic analysis is able to confirm genetic diversity and variation pattern of ancient organisms in archeological soil. Most of all, it is convinced of carrying through genetic preservation of exterminated ancient organisms. If archeological soils should be analysed through the natural scientific methods such as organic chemistry, soil science, microbiology, molecular biology, and genetics, this is helpful for us to understand and interpretation past historic event. And it is expected to perform an major role for understanding origin of ancient human and life style.

Analysis on the Changes in Abandoned Paddy Wetlands as a Carbon Absorption Sources and Topographic Hydrological Environment (탄소흡수원으로서의 묵논습지 변화와 지형수문 환경 분석)

  • Miok, Park;Sungwon, Hong;Bonhak, Koo
    • Land and Housing Review
    • /
    • v.14 no.1
    • /
    • pp.83-97
    • /
    • 2023
  • The study aims to provide an academic basis for the preservation and restoration of abandoned paddy wetland and the enhancement of its carbon accumulation function. First, the temporal change of the wetlands was analysed, and a typological classification system for wetlands was attempted with the goal of carbon reduction. The types of wetland were classified based on three variables: hydrological environment, vegetation, and carbon accumulation, with a special attention on the function of carbon accumulation. The types of abandoned paddy wetlands were classified into 12 categories based on hydrologic variables- either high or low levels of water inflow potential-, vegetation variables with either dominance of aquatic plants or terrestrial plants, and three carbon accumulation variables including organic matter production, soil organic carbon accumulation, and decomposition. It was found that the development period of abandoned paddy analyzed with aerial photographs provided by the National Geographic Information Institute happened between 2010 and 2015. In the case of the wetland in Daejeon 1 (DJMN01) farming stopped by 1990 and it appeared to be a similar structure to natural wetlands after 2010 . Over the past 40 years the abandoned paddy wetland changed to a high proportion of forests and agricultural lands. As time went by, such forests and agricultural lands tended to decrease rapidly and the lands were covered by artificial grass and other types of forests.

Ecological Monitoring on Changes in Microclimate, Vegetation and Soil Properties after 2 Years in Restoration Project Sites Linking the Ridgeline of Baekdudaegan (백두대간 생태축 복원사업 2년 후 산림미기상, 식생 및 토양특성 변화 모니터링)

  • Park, Yeong Dae;Kwon, Tae Ho;Ma, Ho Seop
    • Journal of agriculture & life science
    • /
    • v.50 no.1
    • /
    • pp.125-136
    • /
    • 2016
  • The Korea Forest Service(KFS) has been initiating restoration activities of ridgeline in damaged and fragmented areas of Baekdudaegan since 2011. Completed project in Ihwaryeong, Yuksimnyeong & Beoljae(2012; 2013) were selected as sites for this study. The changes in microclimate condition, vegetation composition and soil properties between project sites and adjacent stands were compared to evaluate the effect of restoration at early stage(after 2years). Pinus densiflora was planted mainly for these restoration sites, however Robinia pseudoacacia and Alnus sibirica invaded the area two years after the restoration activities. Ihwaryeong showed the most changes in understory vegetation among the study sites. Exotic species, such as Ambrosia artemisiifolia, Oenothera odorata, Erigeron annuus, and Coreopsis tinctoria invaded Ihwaryeong, and the dominance have invaded currently. It resulted from the poor survival rate of trees and high difference in microclimate wherein there's an increased temperature and decreased humidity in both restored sites and adjacent stands. In addition, it is also caused by poor soil chemical property, especially pH and organic matter content due to lack of humus layer and its accumulation, compared to adjacent forest soil in restored sites. Significant difference on chemical soil property was observed between restored sites and adjacent forest but no significant difference was observed after two years of restoration. Ecological monitoring is needed to understand the ecological changes after restoration and to establish a long-term management strategy.

The Carbon Stock Change of Vegetation and Soil in the Forest Due to Forestry Projects (산림 사업에 의한 산림 식생 및 토양 탄소 변화)

  • Heon Mo Jeong;Inyoung Jang;Sanghak Han;Soyeon Cho;Chul-Hyun Choi;Yeon Ji Lee;Sung-Ryong Kang
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.330-338
    • /
    • 2023
  • To investigate the impact of forestry projects on the carbon stocks of forests, we estimated the carbon stock change of above-ground and soil before and after forestry projects using forest type maps, forestry project information, and soil information. First, we selected six map sheet with large areas and declining age class based on forest type map information. Then, we collected data such as forest type maps, growth coefficients, soil organic matter content, and soil bulk density of the estimated areas to calculate forest carbon storage. As a result, forest carbon stocks decreased by about 34.1~70.0% after forestry projects at all sites. In addition, compared to reference studies, domestic forest soils store less carbon than the above-ground, so it is judged that domestic forest soils have great potential to store more carbon and strategies to increase carbon storage are needed. It was estimated that the amount of carbon stored before forestry projects is about 1.5 times more than after forestry projects. The study estimated that it takes about 27 years for forests to recover to their pre-thinning carbon stocks following forestry projects. Since it takes a long time for forests to recover to their original carbon stocks once their carbon stocks are reduced by physical damage, it is necessary to plan to preserve them as much as possible, especially for highly conservative forests, so that they can maintain their carbon storage function.

Review on hazardous microcystins originating from harmful cyanobacteria and corresponding eliminating methods (유해 남세균 유래 마이크로시스틴의 위해성과 제거 방안 고찰)

  • Sok Kim;Yoon-E Choi
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.370-385
    • /
    • 2023
  • Cyanobacterial harmful algal blooms (Cyano-HABs) are an international environmental problem that negatively affects the ecosystem as well as the safety of water resources by discharging cyanotoxins. In particular, the discharge of microcystins (MCs), a highly toxic substance, has been studied most actively, and various water treatment methods have been proposed for this purpose. In this paper, we reviewed adsorption technology, which is recognized as the most feasible, economical, and efficient method among suggested treatment methods for removing MCs. Activated carbons (AC) are widely used adsorbents for MCs removal, and excellent MCs adsorption performance has been reported. Research on alternative adsorption materials for AC such as biochar and biosorbents has been conducted, however, their performance was lower compared to activated carbon. The impacts of adsorbent properties(characteristics of pore surface chemistry) and environmental factors (solution pH, temperature, natural organic matter, and ionic strength) on the MCs adsorption performance were also discussed. In addition, toward effective control of MCs, the possibility of the direct removal of harmful cyanobacteria as well as the removal of dissolved MCs using adsorption strategy was examined. However, to fully utilize the adsorption for the removal of MCs, the application and optimization under actual environmental conditions are still required, thereby meeting the environmental and economic standards. From this study, crucial insights could be provided for the development and selection of effective adsorbent and subsequent adsorption processes for the removal of MCs from water resources.

Analysis of the Environmental Index and Situation Naturalized Plants in the Stream of Downtown Jeonju (전주 도심 하천의 귀화식물 현황과 환경지수 분석)

  • Oh, Hyun-Kyung;Beon, Mu-Sup
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.3
    • /
    • pp.248-257
    • /
    • 2006
  • Total naturalized plant species in the streams of Jeonju were listed as 109 taxa; 24 families, 75 genera, 106 species, 3 varieties. Dividing by stream, Jeonju stream has 75 taxa; 20 families, 55 genera, 73 species, 2 varieties. Samcheon stream has 86 taxa; 19 families, 64 genera, 84 species, 2 varieties. Soyang stream has 80 taxa; 21 families, 60 genera, 77 species, 3 varieties. Urbanization Index (UI) of total streams (109 taxa) was 40.2%. UI was 27.7% in Jeonju stream (75 taxa), 31.7% in Samcheon stream (86 taxa), 29.5% in Soyang stream (80 taxa). Dividing by degree of naturalization classification, 25 taxa (9.2%) were found in class 5, 17 taxa (6.2%) in class 4, 32 taxa (11.8%) in class 3, 27 taxa (9.9%) in class 2 and 8 taxa (2.9%) in class 1. Dividing by introduction period, 48 taxa (44%) aye in period I, 19 taxa (17%) in period II, 42 taxa (39%) in period III. Dividing by growth type, 48 taxa (44%) are annuals, 25 taxa (23%) are biennials, 33 taxa (30%) are perennials. Dividing by the place of origin, 39 taxa (35%) are from Euyope, 33 taxa (30%) from North America, 11 taxa (10%) from Tropic America, 9 taxa (8%) from Europe Asia,5 taxa (5%) from South America, 5 taxa (5%) from China.

Geochemical Studies of Geothermal Waters in Yusung Geotheraml Area (유성 지역 지열수의 지구화학적 특성 연구)

  • 김건영;고용권;김천수;배대석;박맹언
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.1
    • /
    • pp.32-46
    • /
    • 2000
  • Hydrogeochemical and isotope ($\delta$$^{18}$ O, $\delta$D, $^3$H, $\delta$$^{13}$ C, $\delta$$^{34}$ S, $^{87}$ Sr/$^{86}$ Sr) studies of various kinds of waters (thermal groundwater, deep groundwater, shallow groundwater, and surface water) from the Yusung area were carried out in order to elucidate their geochemical characteristics such as distribution and behaviour of major/minor elements, geochemical evolution, reservoir temperature, and water-rock interaction of the thermal groundwater. Thermal groundwater of the Yusung area is formed by heating at depth during deep circlulation of groundwater and is evolved into Na-HCO$_3$type water by hydrolysis of silicate minerals with calcite precipitation and mixing of shallow groundwater. High NO$_3$contents of many thermal and deep groundwater samples indicate that the thermal or deep groundwaters were mixed with contaminated shallow groundwater and/or surface water. $\delta$$^{18}$ O and $\delta$D are plotted around the global meteoric water line and there are no differences between the various types of water. Tritium contents of shallow groundwater, deep groundwater and thermal groundwater are quite different, but show that the thermal groundwater was mixed with surface water and/or shallow groundwater during uprising to surface after being heated at depths. $\delta$$^{13}$ C values of all water samples are very low (average -16.3$\textperthousand$%o). Such low $\delta$$^{13}$ C values indicate that the source of carbon is organic material and all waters from the Yusung area were affected by $CO_2$ gas originated from near surface environment. $\delta$$^{34}$ S values show mixing properties of thermal groundwater and shallow groundwater. Based on $^{87}$ Sr/$^{86}$ Sr values, Ca is thought to be originated from the dissolution of plagioclase. Reservoir temperature at depth is estimated to be 100~1$25^{\circ}C$ by calculation of equilibrium method of multiphase system. Therefore, the thermal groundwaters from the Yusung area were formed by heating at depths and evolved by water-rock interaction and mixing with shallow groundwater.

  • PDF