• Title/Summary/Keyword: 자연어 처리 기법

Search Result 220, Processing Time 0.022 seconds

Transformer and Spatial Pyramid Pooling based YOLO network for Object Detection (객체 검출을 위한 트랜스포머와 공간 피라미드 풀링 기반의 YOLO 네트워크)

  • Kwon, Oh-Jun;Jeong, Je-Chang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.113-116
    • /
    • 2021
  • 일반적으로 딥러닝 기반의 객체 검출(Object Detection)기법은 합성곱 신경망(Convolutional Neural Network, CNN)을 통해 입력된 영상의 특징(Feature)을 추출하여 이를 통해 객체 검출을 수행한다. 최근 자연어 처리 분야에서 획기적인 성능을 보인 트랜스포머(Transformer)가 영상 분류, 객체 검출과 같은 컴퓨터 비전 작업을 수행하는데 있어 경쟁력이 있음이 드러나고 있다. 본 논문에서는 YOLOv4-CSP의 CSP 블록을 개선한 one-stage 방식의 객체 검출 네트워크를 제안한다. 개선된 CSP 블록은 트랜스포머(Transformer)의 멀티 헤드 어텐션(Multi-Head Attention)과 CSP 형태의 공간 피라미드 풀링(Spatial Pyramid Pooling, SPP) 연산을 기반으로 네트워크의 Backbone과 Neck에서의 feature 학습을 돕는다. 본 실험은 MSCOCO test-dev2017 데이터 셋으로 평가하였으며 제안하는 네트워크는 YOLOv4-CSP의 경량화 모델인 YOLOv4s-mish에 대하여 평균 정밀도(Average Precision, AP)기준 2.7% 향상된 검출 정확도를 보인다.

  • PDF

Design of Sentence Semantic Model for Cause-Effect Graph Automatic Generation from Natural Language Oriented Informal Requirement Specifications (비정형 요구사항으로부터 원인-결과 그래프 자동 발생을 위한 문장 의미 모델(Sentence Semantic Model) 설계)

  • Jang, Woo Sung;Jung, Se Jun;Kim, R.Young Chul
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.215-219
    • /
    • 2020
  • 현재 한글 언어학 영역에서는 많은 언어 분석 연구가 수행되었다. 또한 소프트웨어공학의 요구공학 영역에서는 명료한 요구사항 정의와 분석이 필요하고, 비정형화된 요구사항 명세서로부터 테스트 케이스 추출이 매우 중요한 이슈이다. 즉, 자연어 기반의 요구사항 명세서로부터 원인-결과 그래프(Cause-Effect Graph)를 통한 의사 결정 테이블(Decision Table) 기반 테스트케이스(Test Case)를 자동 생성하는 방법이 거의 없다. 이런 문제를 해결하기 위해 '한글 언어 의미 분석 기법'을 '요구공학 영역'에 적용하는 방법이 필요하다. 본 논문은 비정형화된 요구사항으로부터 테스트케이스 생성하는 과정의 중간 단계인 요구사항에서 문장 의미 모델(Sentence Semantic Model)을 자동 생성하는 방법을 제안 한다. 이는 요구사항으로부터 생성된 원인-결과 그래프의 정확성을 검증할 수 있다.

  • PDF

Evaluation of Large Language Models' Korean-Text to SQL Capability (대형 언어 모델의 한국어 Text-to-SQL 변환 능력 평가)

  • Jooyoung Choi;Kyungkoo Min;Myoseop Sim;Haemin Jung;Minjun Park;Stanley Jungkyu Choi
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.171-176
    • /
    • 2023
  • 최근 등장한 대규모 데이터로 사전학습된 자연어 생성 모델들은 대화 능력 및 코드 생성 태스크등에서 인상적인 성능을 보여주고 있어, 본 논문에서는 대형 언어 모델 (LLM)의 한국어 질문을 SQL 쿼리 (Text-to-SQL) 변환하는 성능을 평가하고자 한다. 먼저, 영어 Text-to-SQL 벤치마크 데이터셋을 활용하여 영어 질의문을 한국어 질의문으로 번역하여 한국어 Text-to-SQL 데이터셋으로 만들었다. 대형 생성형 모델 (GPT-3 davinci, GPT-3 turbo) 의 few-shot 세팅에서 성능 평가를 진행하며, fine-tuning 없이도 대형 언어 모델들의 경쟁력있는 한국어 Text-to-SQL 변환 성능을 확인한다. 또한, 에러 분석을 수행하여 한국어 문장을 데이터베이스 쿼리문으로 변환하는 과정에서 발생하는 다양한 문제와 프롬프트 기법을 활용한 가능한 해결책을 제시한다.

  • PDF

Trends in Social Media Participation and Change in ssues with Meta Analysis Using Network Analysis and Clustering Technique (소셜 미디어 참여에 관한 연구 동향과 쟁점의 변화: 네트워크 분석과 클러스터링 기법을 활용한 메타 분석을 중심으로)

  • Shin, Hyun-Bo;Seon, Hyung-Ju;Lee, Zoon-Ky
    • The Journal of Bigdata
    • /
    • v.4 no.1
    • /
    • pp.99-118
    • /
    • 2019
  • This study used network analysis and clustering techniques to analyze studies on social media participation. As a result of the main path analysis, 37 major studies were extracted and divided into two networks: community-related networks and new media-related. Network analysis and clustering result in four clusters. This study has the academic significance of using academic data to grasp research trends at a macro level and using network analysis and machine learning as a methodology.

  • PDF

Development and Evaluation of Information Extraction Module for Postal Address Information (우편주소정보 추출모듈 개발 및 평가)

  • Shin, Hyunkyung;Kim, Hyunseok
    • Journal of Creative Information Culture
    • /
    • v.5 no.2
    • /
    • pp.145-156
    • /
    • 2019
  • In this study, we have developed and evaluated an information extracting module based on the named entity recognition technique. For the given purpose in this paper, the module was designed to apply to the problem dealing with extraction of postal address information from arbitrary documents without any prior knowledge on the document layout. From the perspective of information technique practice, our approach can be said as a probabilistic n-gram (bi- or tri-gram) method which is a generalized technique compared with a uni-gram based keyword matching. It is the main difference between our approach and the conventional methods adopted in natural language processing that applying sentence detection, tokenization, and POS tagging recursively rather than applying the models sequentially. The test results with approximately two thousands documents are presented at this paper.

Multi-Document Summarization Method Based on Semantic Relationship using VAE (VAE를 이용한 의미적 연결 관계 기반 다중 문서 요약 기법)

  • Baek, Su-Jin
    • Journal of Digital Convergence
    • /
    • v.15 no.12
    • /
    • pp.341-347
    • /
    • 2017
  • As the amount of document data increases, the user needs summarized information to understand the document. However, existing document summary research methods rely on overly simple statistics, so there is insufficient research on multiple document summaries for ambiguity of sentences and meaningful sentence generation. In this paper, we investigate semantic connection and preprocessing process to process unnecessary information. Based on the vocabulary semantic pattern information, we propose a multi-document summarization method that enhances semantic connectivity between sentences using VAE. Using sentence word vectors, we reconstruct sentences after learning from compressed information and attribute discriminators generated as latent variables, and semantic connection processing generates a natural summary sentence. Comparing the proposed method with other document summarization methods showed a fine but improved performance, which proved that semantic sentence generation and connectivity can be increased. In the future, we will study how to extend semantic connections by experimenting with various attribute settings.

Problem Analysis on Syntactic Linguistic Knowledge Acquisition and Design of a Supporting Tool (구문적 언어지식 획득 과정의 문제점 분석 및 지원도구 설계)

  • Lee, Hyun-A;Park, Jae-Deuk;Jang, Myung-Gil;Park, Soo-Jun;Park, Dong-In
    • Annual Conference on Human and Language Technology
    • /
    • 1996.10a
    • /
    • pp.489-496
    • /
    • 1996
  • 자연어 처리에서 언어에 대한 지식은 전자사전과 문법규칙으로 구성되어 서로 상보적 관계에 있고, 각 어휘에 대한 품사 및 기타 자질-값에 의해 매개된다. 이러한 언어지식을 전통적인 방법에서는 국어자료의 분석에 경험이 많은 언어전문가의 직관에 다분히 의존하여 정의하였고, 말뭉치를 이용한 자동 획득 기법에서는 태그세트를 먼저 설정하고, 이 태그를 원시 말뭉치에 부착하여 태깅된 말뭉치로부터 자동으로 통계적 분석을 통하여 획득한다. 그런데 두가지 접근방법이 가지고 있는 공통적인 문제점은 품사나 자질-값의 정의 및 할당기준, 선악의 평가기준, 튜닝에 대한 적극적 대처 등이 마련되어 있지 않다는 점이다. 이 연구에서는 이러한 문제점의 발생원인을 말뭉치 분석 과정에서 살펴보고, 품사 및 자질-값의 설정과 할당기준을 마련하는 방법론 및 이를 적극적으로 지원하는 도구를 설계한다.

  • PDF

A Design of Requirement Engineering Process Model Based on CSCW Enviroment (CSCW 환경에 기반한 요구공학 프로세스 모델 설계)

  • Hwang, Man-Soo;Lee, Won-Woo;Rhew, Sung-Yul
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.10
    • /
    • pp.3075-3085
    • /
    • 2000
  • According to distributed, large-caled environment of software development and operation, the elicitation and specivication of correct and complete requrement is the most important factor for the system. In addition contiuous and dramatic systerm canging requests in cooperative environment with internet require more efficient, requirement management. In this paper we detine the specification architecture and techruques for requrements, so that we improve the efficiency ofnatural language-based requirement speciticationand management in a cooperatie work environment. Also, we propose a software requirement engineering process model and environment based on requirements in a CSC@(Computer Supported Cjooperative Work) environment, therefore transfer them into analysis phase.

  • PDF

Improving transformer-based acoustic model performance using sequence discriminative training (Sequence dicriminative training 기법을 사용한 트랜스포머 기반 음향 모델 성능 향상)

  • Lee, Chae-Won;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.3
    • /
    • pp.335-341
    • /
    • 2022
  • In this paper, we adopt a transformer that shows remarkable performance in natural language processing as an acoustic model of hybrid speech recognition. The transformer acoustic model uses attention structures to process sequential data and shows high performance with low computational cost. This paper proposes a method to improve the performance of transformer AM by applying each of the four algorithms of sequence discriminative training, a weighted finite-state transducer (wFST)-based learning used in the existing DNN-HMM model. In addition, compared to the Cross Entropy (CE) learning method, sequence discriminative method shows 5 % of the relative Word Error Rate (WER).

DART: Data Augmentation using Retrieval Technique (DART: 검색 모델 기술을 사용한 데이터 증강 방법론 연구)

  • Seungjun Lee;Jaehyung Seo;Jungseob Lee;Myunghoon Kang;Hyeonseok Moon;Chanjun Park;Dahyun Jung;Jaewook Lee;Kinam Park;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.313-319
    • /
    • 2022
  • 최근 BERT와 같은 트랜스포머 (Transformer) 기반의 모델이 natural language understanding (NLU)와 같은 여러 자연어 처리 태스크에서 좋은 성능을 보인다. 이러한 모델은 여전히 대용량의 학습을 요구한다. 일반적으로, 데이터 증강 기법은 low-resource 환경을 개선하는 데 도움을 준다. 최근 생성 모델을 활용해 합성 데이터를 생성해 데이터를 증강하는 시도가 이루어졌다. 이러한 방법은 원본 문장과 의미론적 유사성을 훼손하지 않으면서 어휘와 구조적 다양성을 높이는 것을 목표로 한다. 본 논문은 task-oriented 한 어휘와 구조를 고려한 데이터 증강 방법을 제안한다. 이를 위해 검색 모델과 사전 학습된 생성 모델을 활용한다. 검색 모델을 사용해 학습 데이터셋의 입력 문장과 유사한 문장 쌍을 검색 (retrieval) 한다. 검색된 유사한 문장 쌍을 사용하여 생성 모델을 학습해 합성 데이터를 생성한다. 본 논문의 방법론은 low-resource 환경에서 베이스라인 성능을 최대 4% 이상 향상할 수 있었으며, 기존의 데이터 증강 방법론보다 높은 성능 향상을 보인다.

  • PDF