Proceedings of the Korean Society of Broadcast Engineers Conference
/
fall
/
pp.113-116
/
2021
일반적으로 딥러닝 기반의 객체 검출(Object Detection)기법은 합성곱 신경망(Convolutional Neural Network, CNN)을 통해 입력된 영상의 특징(Feature)을 추출하여 이를 통해 객체 검출을 수행한다. 최근 자연어 처리 분야에서 획기적인 성능을 보인 트랜스포머(Transformer)가 영상 분류, 객체 검출과 같은 컴퓨터 비전 작업을 수행하는데 있어 경쟁력이 있음이 드러나고 있다. 본 논문에서는 YOLOv4-CSP의 CSP 블록을 개선한 one-stage 방식의 객체 검출 네트워크를 제안한다. 개선된 CSP 블록은 트랜스포머(Transformer)의 멀티 헤드 어텐션(Multi-Head Attention)과 CSP 형태의 공간 피라미드 풀링(Spatial Pyramid Pooling, SPP) 연산을 기반으로 네트워크의 Backbone과 Neck에서의 feature 학습을 돕는다. 본 실험은 MSCOCO test-dev2017 데이터 셋으로 평가하였으며 제안하는 네트워크는 YOLOv4-CSP의 경량화 모델인 YOLOv4s-mish에 대하여 평균 정밀도(Average Precision, AP)기준 2.7% 향상된 검출 정확도를 보인다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.215-219
/
2020
현재 한글 언어학 영역에서는 많은 언어 분석 연구가 수행되었다. 또한 소프트웨어공학의 요구공학 영역에서는 명료한 요구사항 정의와 분석이 필요하고, 비정형화된 요구사항 명세서로부터 테스트 케이스 추출이 매우 중요한 이슈이다. 즉, 자연어 기반의 요구사항 명세서로부터 원인-결과 그래프(Cause-Effect Graph)를 통한 의사 결정 테이블(Decision Table) 기반 테스트케이스(Test Case)를 자동 생성하는 방법이 거의 없다. 이런 문제를 해결하기 위해 '한글 언어 의미 분석 기법'을 '요구공학 영역'에 적용하는 방법이 필요하다. 본 논문은 비정형화된 요구사항으로부터 테스트케이스 생성하는 과정의 중간 단계인 요구사항에서 문장 의미 모델(Sentence Semantic Model)을 자동 생성하는 방법을 제안 한다. 이는 요구사항으로부터 생성된 원인-결과 그래프의 정확성을 검증할 수 있다.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.171-176
/
2023
최근 등장한 대규모 데이터로 사전학습된 자연어 생성 모델들은 대화 능력 및 코드 생성 태스크등에서 인상적인 성능을 보여주고 있어, 본 논문에서는 대형 언어 모델 (LLM)의 한국어 질문을 SQL 쿼리 (Text-to-SQL) 변환하는 성능을 평가하고자 한다. 먼저, 영어 Text-to-SQL 벤치마크 데이터셋을 활용하여 영어 질의문을 한국어 질의문으로 번역하여 한국어 Text-to-SQL 데이터셋으로 만들었다. 대형 생성형 모델 (GPT-3 davinci, GPT-3 turbo) 의 few-shot 세팅에서 성능 평가를 진행하며, fine-tuning 없이도 대형 언어 모델들의 경쟁력있는 한국어 Text-to-SQL 변환 성능을 확인한다. 또한, 에러 분석을 수행하여 한국어 문장을 데이터베이스 쿼리문으로 변환하는 과정에서 발생하는 다양한 문제와 프롬프트 기법을 활용한 가능한 해결책을 제시한다.
This study used network analysis and clustering techniques to analyze studies on social media participation. As a result of the main path analysis, 37 major studies were extracted and divided into two networks: community-related networks and new media-related. Network analysis and clustering result in four clusters. This study has the academic significance of using academic data to grasp research trends at a macro level and using network analysis and machine learning as a methodology.
In this study, we have developed and evaluated an information extracting module based on the named entity recognition technique. For the given purpose in this paper, the module was designed to apply to the problem dealing with extraction of postal address information from arbitrary documents without any prior knowledge on the document layout. From the perspective of information technique practice, our approach can be said as a probabilistic n-gram (bi- or tri-gram) method which is a generalized technique compared with a uni-gram based keyword matching. It is the main difference between our approach and the conventional methods adopted in natural language processing that applying sentence detection, tokenization, and POS tagging recursively rather than applying the models sequentially. The test results with approximately two thousands documents are presented at this paper.
As the amount of document data increases, the user needs summarized information to understand the document. However, existing document summary research methods rely on overly simple statistics, so there is insufficient research on multiple document summaries for ambiguity of sentences and meaningful sentence generation. In this paper, we investigate semantic connection and preprocessing process to process unnecessary information. Based on the vocabulary semantic pattern information, we propose a multi-document summarization method that enhances semantic connectivity between sentences using VAE. Using sentence word vectors, we reconstruct sentences after learning from compressed information and attribute discriminators generated as latent variables, and semantic connection processing generates a natural summary sentence. Comparing the proposed method with other document summarization methods showed a fine but improved performance, which proved that semantic sentence generation and connectivity can be increased. In the future, we will study how to extend semantic connections by experimenting with various attribute settings.
Annual Conference on Human and Language Technology
/
1996.10a
/
pp.489-496
/
1996
자연어 처리에서 언어에 대한 지식은 전자사전과 문법규칙으로 구성되어 서로 상보적 관계에 있고, 각 어휘에 대한 품사 및 기타 자질-값에 의해 매개된다. 이러한 언어지식을 전통적인 방법에서는 국어자료의 분석에 경험이 많은 언어전문가의 직관에 다분히 의존하여 정의하였고, 말뭉치를 이용한 자동 획득 기법에서는 태그세트를 먼저 설정하고, 이 태그를 원시 말뭉치에 부착하여 태깅된 말뭉치로부터 자동으로 통계적 분석을 통하여 획득한다. 그런데 두가지 접근방법이 가지고 있는 공통적인 문제점은 품사나 자질-값의 정의 및 할당기준, 선악의 평가기준, 튜닝에 대한 적극적 대처 등이 마련되어 있지 않다는 점이다. 이 연구에서는 이러한 문제점의 발생원인을 말뭉치 분석 과정에서 살펴보고, 품사 및 자질-값의 설정과 할당기준을 마련하는 방법론 및 이를 적극적으로 지원하는 도구를 설계한다.
The Transactions of the Korea Information Processing Society
/
v.7
no.10
/
pp.3075-3085
/
2000
According to distributed, large-caled environment of software development and operation, the elicitation and specivication of correct and complete requrement is the most important factor for the system. In addition contiuous and dramatic systerm canging requests in cooperative environment with internet require more efficient, requirement management. In this paper we detine the specification architecture and techruques for requrements, so that we improve the efficiency ofnatural language-based requirement speciticationand management in a cooperatie work environment. Also, we propose a software requirement engineering process model and environment based on requirements in a CSC@(Computer Supported Cjooperative Work) environment, therefore transfer them into analysis phase.
In this paper, we adopt a transformer that shows remarkable performance in natural language processing as an acoustic model of hybrid speech recognition. The transformer acoustic model uses attention structures to process sequential data and shows high performance with low computational cost. This paper proposes a method to improve the performance of transformer AM by applying each of the four algorithms of sequence discriminative training, a weighted finite-state transducer (wFST)-based learning used in the existing DNN-HMM model. In addition, compared to the Cross Entropy (CE) learning method, sequence discriminative method shows 5 % of the relative Word Error Rate (WER).
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.313-319
/
2022
최근 BERT와 같은 트랜스포머 (Transformer) 기반의 모델이 natural language understanding (NLU)와 같은 여러 자연어 처리 태스크에서 좋은 성능을 보인다. 이러한 모델은 여전히 대용량의 학습을 요구한다. 일반적으로, 데이터 증강 기법은 low-resource 환경을 개선하는 데 도움을 준다. 최근 생성 모델을 활용해 합성 데이터를 생성해 데이터를 증강하는 시도가 이루어졌다. 이러한 방법은 원본 문장과 의미론적 유사성을 훼손하지 않으면서 어휘와 구조적 다양성을 높이는 것을 목표로 한다. 본 논문은 task-oriented 한 어휘와 구조를 고려한 데이터 증강 방법을 제안한다. 이를 위해 검색 모델과 사전 학습된 생성 모델을 활용한다. 검색 모델을 사용해 학습 데이터셋의 입력 문장과 유사한 문장 쌍을 검색 (retrieval) 한다. 검색된 유사한 문장 쌍을 사용하여 생성 모델을 학습해 합성 데이터를 생성한다. 본 논문의 방법론은 low-resource 환경에서 베이스라인 성능을 최대 4% 이상 향상할 수 있었으며, 기존의 데이터 증강 방법론보다 높은 성능 향상을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.