• 제목/요약/키워드: 자연어 생성 제어

검색결과 10건 처리시간 0.021초

목적 지향 대화 시스템을 위한 문맥 기반의 제어 가능한 자연어 생성 모델 (Context-aware and controllable natural language generation model for task-oriented dialogue systems )

  • 함진아;김재원;양동일
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.71-76
    • /
    • 2022
  • 목적 지향 대화 시스템은 사용자가 원하는 목적을 달성하기 위해 사용하는 시스템으로 일상 대화와 다르게 시스템이 정보를 명확히 전달하는 것이 중요하다. 따라서 최근 연구에서 목적 지향 대화 시스템을 위한 자연어 생성 모델은 정해진 대화 정책에 따라 알맞은 응답을 생성할 수 있도록 의도와 슬롯 정보를 담은 대화 행위(Dialog Act)를 활용한다. 하지만 대화 행위는 생성하는 문장을 탁월하게 제어하는 반면에 대화의 흐름과 상황에 맞게 다양한 문장을 생성하기 어렵다는 문제점을 가지고 있다. 이러한 문제점을 해소하고자 본 논문에서는 목적에 부합하는 내용을 명확하게 자연어로 생성하기 위해 대화 행위를 사용하면서 동시에 일상 대화 생성 모델과 같이 문맥을 고려하여 대화 흐름에 어울리는 자연스러운 문장을 생성할 수 있는 문맥 기반의 제어 가능한 자연어 생성 모델을 제안한다. 실험에서는 KoGPT2 사전 학습 모델과 한국어 대화 데이터셋을 사용하였으며 실험을 통해 대화 행위 기반의 자연어 생성 모델과 본 연구에서 제안한 문맥 기반의 제어 가능한 자연어 생성 모델을 비교하였다. 결과적으로 대화 행위를 단독으로 학습한 모델보다 일정 문맥을 함께 학습한 모델이 유의미한 BLEU 점수 향상을 보인다는 점을 확인하였다.

  • PDF

Instruction Tuning을 통한 한국어 언어 모델 문장 생성 제어 (Instruction Tuning for Controlled Text Generation in Korean Language Model)

  • 장진희;서대룡;전동현;강인호;나승훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.289-294
    • /
    • 2023
  • 대형 언어 모델(Large Language Model)은 방대한 데이터와 파라미터를 기반으로 문맥 이해에서 높은 성능을 달성하였지만, Human Alignment를 위한 문장 생성 제어 연구는 아직 활발한 도전 과제로 남아있다. 본 논문에서는 Instruction Tuning을 통한 문장 생성 제어 실험을 진행한다. 자연어 처리 도구를 사용하여 단일 혹은 다중 제약 조건을 포함하는 Instruction 데이터 셋을 자동으로 구축하고 한국어 언어 모델인 Polyglot-Ko 모델에 fine-tuning 하여 모델 생성이 제약 조건을 만족하는지 검증하였다. 실험 결과 4개의 제약 조건에 대해 평균 0.88의 accuracy를 보이며 효과적인 문장 생성 제어가 가능함을 확인하였다.

  • PDF

복수 대규모 언어 모델에 기반한 제어 가능형 데이터 증강 프레임워크 (Controllable data augmentation framework based on multiple large-scale language models)

  • 강현석;남궁혁;정지수;정상근
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.3-8
    • /
    • 2023
  • 데이터 증강은 인공지능 모델의 학습에서 필요한 데이터의 양이 적거나 편향되어 있는 경우, 이를 보완하여 모델의 성능을 높이는 데 도움이 된다. 이미지와는 달리 자연어의 데이터 증강은 문맥이나 문법적 구조와 같은 특징을 고려해야 하기 때문에, 데이터 증강에 많은 인적자원이 소비된다. 본 연구에서는 복수의 대규모 언어 모델을 사용하여 입력 문장과 제어 조건으로 프롬프트를 구성하는 데 최소한의 인적 자원을 활용한 의미적으로 유사한 문장을 생성하는 방법을 제안한다. 또한, 대규모 언어 모델을 단독으로 사용하는 것만이 아닌 병렬 및 순차적 구조로 구성하여 데이터 증강의 효과를 높이는 방법을 제안한다. 대규모 언어 모델로 생성된 데이터의 유효성을 검증하기 위해 동일한 개수의 원본 훈련 데이터와 증강된 데이터를 한국어 모델인 KcBERT로 다중 클래스 분류를 수행하였을 때의 성능을 비교하였다. 다중 대규모 언어 모델을 사용하여 데이터 증강을 수행하였을 때, 모델의 구조와 관계없이 증강된 데이터는 원본 데이터만을 사용하였을 때보다 높거나 그에 준하는 정확도를 보였다. 병렬 구조의 다중 대규모 언어 모델을 사용하여 400개의 원본 데이터를 증강하였을 때에는, 원본 데이터의 최고 성능인 0.997과 0.017의 성능 차이를 보이며 거의 유사한 학습 효과를 낼 수 있음을 보였다.

  • PDF

Plug and Play Language Model을 활용한 대화 모델의 독성 응답 생성 감소 (Reducing Toxic Response Generation in Conversational Models using Plug and Play Language Model)

  • 김병주;이근배
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.433-438
    • /
    • 2021
  • 대화 시스템은 크게 사용자와 시스템이 특정 목적 혹은 자유 주제에 대해 대화를 진행하는 것으로 구분된다. 최근 자유주제 대화 시스템(Open-Domain Dialogue System)에 대한 연구가 활발히 진행됨에 따라 자유 주제를 기반으로 하는 상담 대화, 일상 대화 시스템의 독성 발화 제어 생성에 대한 연구의 중요성이 더욱 커지고 있다. 이에 본 논문에서는 대화 모델의 독성 응답 생성을 제어하기 위해 일상 대화 데이터셋으로 학습된 BART 모델에 Plug-and-Play Language Model 방법을 적용한다. 공개된 독성 대화 분류 데이터셋으로 학습된 독성 응답 분류기를 PPLM의 어트리뷰트(Attribute) 모델로 활용하여 대화 모델의 독성 응답 생성을 감소시키고 그 차이를 실험을 통해 정량적으로 비교한다. 실험 결과 어트리뷰트 모델을 활용한 모든 실험에서 독성 응답 생성이 감소함을 확인하였다.

  • PDF

한글 요구사항 기반 결정 테이블로부터 테스트 케이스 생성을 위한 메타모델링 구축화 (Metamodeling Construction for Generating Test Case via Decision Table Based on Korean Requirement Specifications)

  • 장우성;문소영;김영철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권9호
    • /
    • pp.381-386
    • /
    • 2023
  • 기존의 다양한 테스트 케이스 생성에 대한 연구는 모델로부터 테스트 케이스를 추출한다. 하지만 실무의 경우 자연어 요구사항 문장으로부터 테스트 케이스를 생성할 수 있어야 한다. 이를 위해 자연어 문장의 분석하고, 분석 과정 및 결과를 요구공학 영역에 접목하는 연구는 매우 필요하다. 하지만 한국어 문장의 다양성 때문에, 한국어 자연어 요구사항 분석은 어려운 이슈이다. 우리는 한국어 자연어 요구사항으로부터 테스트 케이스 생성 연구 중 하나로써, 자연어 요구사항의 정의 분석, C3Tree 모델의 생성, 원인-결과 그래프의 생성, 결정 테이블의 생성 단계를 통한 테스트 케이스 생성 방법을 연구한다. 본 논문은 중단 단계로써, 메타모델링 변환 기법을 이용하여 C3Tree 모델 기반의 결정 테이블로부터 테스트 케이스 생성 방법을 제안한다. 이 방법은 모델 변환 규칙의 수정을 통해 모델 to 모델, 모델 to 텍스트로의 변환 과정을 제어한다. 모델이 변형되거나, 새로운 모델이 추가되더라도 프로그램 알고리즘의 직접적인 수정 없이 모델 변환 규칙을 유지보수 할 수 있다. 평가 결과, 결정 테이블에 대한 모든 조합이 테스트 케이스로 자동 생성되었다.

GR(1) 명세로부터 제어기를 합성하는 사례 연구 (Case Study on Synthesizing Controller from GR(1) Specification)

  • 임혜민;권기현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 춘계학술발표대회
    • /
    • pp.522-525
    • /
    • 2016
  • 마오즈가 참고문헌 [4]에서 언급했듯이, GR(1) 합성이 소프트웨어 공학에서 활발히 사용되기 위해서는 명세 작성의 어려움이 해결되어야 한다. 명세 작성을 돕기 위해서 패턴 활용, 자연어 사용 및 그래픽 명세 언어 등이 제안되었지만 기대한 만큼 실효를 거두지는 못하고 있다. 일반 개발자들이 명세 작성을 배울 때 선호하는 방법이 예제에 의한 학습(learning by example) 이다. 본 논문에서는 GR(1) 합성을 이용하여 명세로부터 게임 예제의 제어기를 생성한다.

복사-메커니즘과 추론 단계의 페널티를 이용한 Copy-Transformer 기반 문서 생성 요약 (Copy-Transformer model using Copy-Mechanism and Inference Penalty for Document Abstractive Summarization)

  • 전동현;강인호
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.301-306
    • /
    • 2019
  • 문서 생성 요약은 최근 딥러닝을 이용한 end-to-end 시스템을 통해 유망한 결과들을 보여주고 있어 연구가 활발히 진행되고 있는 자연어 처리 분야 중 하나이다. 하지만 문서 생성 요약 모델을 구성하기 위해서는 대량의 본문과 요약문 쌍의 데이터 셋이 필요한데, 이를 구축하기가 쉽지 않다. 따라서 본 논문에서는 정교한 뉴스 기사 요약 데이터 셋을 기계적으로 구축하는 방법을 제안한다. 또한 딥러닝 기반의 생성 요약은 입력 문서와 다른 정보를 생성하거나, 또는 같은 단어를 반복하여 생성하는 문제점들이 존재한다. 이를 해결하기 위해 요약문을 생성할 때 입력 문서의 내용을 인용하는 복사-메커니즘과, 추론 단계에서 단어 반복을 직접적으로 제어하는 페널티를 사용하면 상대적으로 안정적인 문장이 생성될 수 있다. 그리고 Transformer 모델은 순환 신경망 모델보다 요약문 생성 과정에서 시퀀스 길이가 긴 본문의 정보를 적절히 인코딩하여 줄 수 있는 모델이다. 따라서 본 논문에서는 복사-메커니즘과 추론 단계의 페널티를 이용한 Copy-Transformer 모델을 한국어 문서 생성 요약 데이터에 적용하였다. 네이버 지식iN 질문 요약 데이터 셋과 뉴스 기사 요약 데이터 셋 상에서 실험한 결과, 제안한 모델을 이용한 생성 요약이 비교 모델들 대비 가장 좋은 성능을 보이고 양질의 요약을 생성하는 것을 확인하였다.

  • PDF

딥러닝 기반의 로봇팔 시스템 연구 (A Study on Deep Learning Based RobotArm System)

  • 신준호;심규석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.901-904
    • /
    • 2020
  • 본 시스템은 세 단계의 모델을 복합적으로 구성하여 이루어진다. 첫 단계로 사람의 음성언어를 텍스트로 전환한 후 사용자의 발화 의도를 분류해내는 BoW방식을 이용해 인간의 명령을 이해할 수 있는 자연어 처리 알고리즘을 구성한다. 이후 YOLOv3-tiny를 이용한 실시간 영상처리모델과 OctoMapping모델을 활용하여 주변환경에 대한 3차원 지도생성 후 지도데이터를 기반으로하여 동작하는 기구제어 알고리즘 등을 ROS actionlib을 이용한 관리자시스템을 구성하여 ROS와 딥러닝을 활용한 편리한 인간-로봇 상호작용 시스템을 제안한다.

경량 작업증명시스템을 이용한 스마트 홈 접근제어 연구 (A Study on a Smart Home Access Control using Lightweight Proof of Work)

  • 김대엽
    • 전기전자학회논문지
    • /
    • 제24권4호
    • /
    • pp.931-941
    • /
    • 2020
  • 기계학습을 이용한 자연어처리 기술이 발전하면서 SHNS (Smart Home Network Service)가 다시 주목받고 있다. 그러나 SHNS는 구성 기기의 다양성과 사용자의 가변성 등으로 인하여 표준화된 인증 시스템 적용이 어렵다. 블록체인은 분산 환경에서 데이터 인증을 위한 기술로 제안되고 있지만, 작업증명시스템 구현 시 요구되는 계산 오버헤드 때문에 SHNS에 적용하는데 한계가 있다. 본 논문에서는 경량화된 작업증명시스템을 제안하였다. 제안하는 경량화된 작업증명시스템은 기기의 작업 권한을 제어함으로써 블록 생성을 관리하도록 제안되었다. 또한 본 논문에서는 이를 기반으로 SHNS의 접근통제 방안을 제안한다.

QA Pair Passage RAG 기반 LLM 한국어 챗봇 서비스 (QA Pair Passage RAG-based LLM Korean chatbot service)

  • 신중민;이재욱;김경민;이태민;안성민;박정배;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.683-689
    • /
    • 2023
  • 자연어 처리 분야는 최근에 큰 발전을 보였으며, 특히 초대규모 언어 모델의 등장은 이 분야에 큰 영향을 미쳤다. GPT와 같은 모델은 다양한 NLP 작업에서 높은 성능을 보이고 있으며, 특히 챗봇 분야에서 중요하게 다루어지고 있다. 하지만, 이러한 모델에도 여러 한계와 문제점이 있으며, 그 중 하나는 모델이 기대하지 않은 결과를 생성하는 것이다. 이를 해결하기 위한 다양한 방법 중, Retrieval-Augmented Generation(RAG) 방법이 주목받았다. 이 논문에서는 지식베이스와의 통합을 통한 도메인 특화형 질의응답 시스템의 효율성 개선 방안과 벡터 데이터 베이스의 수정을 통한 챗봇 답변 수정 및 업데이트 방안을 제안한다. 본 논문의 주요 기여는 다음과 같다: 1) QA Pair Passage RAG을 활용한 새로운 RAG 시스템 제안 및 성능 향상 분석 2) 기존의 LLM 및 RAG 시스템의 성능 측정 및 한계점 제시 3) RDBMS 기반의 벡터 검색 및 업데이트를 활용한 챗봇 제어 방법론 제안

  • PDF