Journal of the Korean Institute of Intelligent Systems
/
v.19
no.2
/
pp.212-217
/
2009
There are rule-based learning method and statistic based learning method and so on which represent learning method for hierarchy relation between domain term. In this paper, we propose to leveling and similarity measure using the extended AHP of fuzzy term in Information system. In the proposed method, we extract fuzzy term in document and categorize ontology structure about it and level priority of fuzzy term using the extended AHP for specificity of fuzzy term. the extended AHP integrates multiple decision-maker for weighted value and relative importance of fuzzy term. and compute semantic similarity of fuzzy term using min operation of fuzzy set, dice's coefficient and Min+dice's coefficient method. and determine final alternative fuzzy term. after that compare with three similarity measure. we can see the fact that the proposed method is more definite than classification performance of the conventional methods and will apply in Natural language processing field.
The Transactions of the Korea Information Processing Society
/
v.3
no.6
/
pp.1443-1452
/
1996
In this paper, we propose a semantic similarity measure for reusable software components, which aims to provide the automatic classification process of reusable to be stored in the structure of a software library, and to provide an efficient retrieval method of the software components satisfying the user's requirements. We have identified the facets to represent component characteristics by extracting information from the component descriptions written in a natural language, composed the software component identifiers from the automatically extracted terms corresponding to each facets, and stored them which the components in the nearest locations according to the semantic similarity of the classified components. In order to retrieve components satisfying user's requirements, we measured a semantic similarity between the queries and the stored components in the software library. As a result of using the semantic similarity to retrieve reusable components, we could not only retrieve the set of components satisfying user's queries. but also reduce the retrieval time of components of user's request. And we further improve the overall retrieval efficiency by assigning relevance ranking to the retrieved components according to the degree of query satisfaction.
As the amount of users and data of NS explosively increased, research based on SNS Big data became active. In social mining, Latent Dirichlet Allocation(LDA), which is a typical topic model technique, is used to identify the similarity of each text from non-classified large-volume SNS text big data and to extract trends therefrom. However, LDA has the limitation that it is difficult to deduce a high-level topic due to the semantic sparsity of non-frequent word occurrence in the short sentence data. The BTM study improved the limitations of this LDA through a combination of two words. However, BTM also has a limitation that it is impossible to calculate the weight considering the relation with each subject because it is influenced more by the high frequency word among the combined words. In this paper, we propose a technique to improve the accuracy of existing BTM by reflecting semantic relation between words.
The voice recognition has been made continuously. Now, this technology could support even natural language beyond recognition of isolated words. Interests for the voice recognition was boosting after the Siri, I-phone based voice recognition software, was presented in 2010. There are some occasions implemented voice enabled services using Korean voice recognition softwares, but their accuracy isn't accurate enough, because of background noise and lack of control on voice related features. In this paper, we propose a sort of multi-purpose preprocessor to improve this situation. This supports Keyword spotting in the continuous speech in addition to noise filtering function. This should be independent of any voice recognition software and it can extend its functionality to support continuous speech by additionally identifying the pre-predicate and the post-predicate in relative to the spotted keyword. We get validation about noise filter effectiveness, keyword recognition rate, continuous speech recognition rate by experiments.
Park, Hyun-Jae;Park, Hae-Sun;Kang, One-Il;Sohn, Young-Sun
Journal of the Korean Institute of Intelligent Systems
/
v.14
no.1
/
pp.28-32
/
2004
Till now, Korean spelling proofreading system has corrected words of a sentence from the relationship of a collocation or the grammatical information of the sentence. In this paper, we propose a system that corrects a word using the relationship among the sememes in a single sentence and substitutes an apt word for a word of the sentence that has the meaningful mistake by a mistyping. The proposed system makes several sentences that are able to communicate with each sememe. The substantives forms meaning tree according to the meaning of the word and the predicate of a sentence defines the meaningful relationship between a substantives of the subject and the object. After this system compares and analyzes the relationship of meaning, it corrects the mistyping of a word in a single sentence that includes an error. If the system finds out the semantic error by the mistyping, it applies the spelling proofreading method that proposed in this paper.
Journal of the Korean Institute of Intelligent Systems
/
v.21
no.6
/
pp.761-766
/
2011
A hedge is a linguistic device to express uncertainties. Hedges are used in a sentence when the writer is uncertain or has doubt about the contents of the sentence. Due to this uncertainty, sentences with hedges are considered to be non-factual. There are many applications which need to determine whether a sentence is factual or not. Detecting hedges has the advantage in information retrieval, and information extraction, and QnA systems, which make use of non-hedge sentences as target to get more accurate results. In this paper, we constructed Korean hedge corpus, and extracted generalized hedge cue-word patterns from the corpus, and then used them in detecting hedges. In our experiments, we achieved 78.6% in F1-measure.
This paper describes an approach to building and evaluating a sentiment dictionary using a Web corpus in the game domain. To build a sentiment dictionary, we collected vocabulary based on game-related web documents from a domestic portal site, using the Twitter Korean Processor. From the collected vocabulary, we selected the words whose POS are tagged as either verbs or adjectives, and assigned sentiment score for each selected word. To evaluate the constructed sentiment dictionary, we calculated F1 score with precision and recall, using Korean-SWN that is based on English Senti-word Net(SWN). The evaluation results show that average F1 scores are 0.85 for adjectives and 0.77 for verbs, respectively.
Many studies in deep learning show results as good as human's decision in various fields. And importance of activation of online-community and SNS grows up in game industry. Even it decides whether a game can be successful or not. The purpose of this study is to construct a system which can read texts and create comments according to schedule in online-community and SNS using deep learning. Using recurrent neural network, we constructed models generating a comment and a schedule of writing comments, and made program choosing a news title and uploading the comment at twitter in calculated time automatically. This study can be applied to activating an online game community, a Q&A service, etc.
Journal of Korean Society of Coastal and Ocean Engineers
/
v.30
no.1
/
pp.19-28
/
2018
Numerous research papers have been accumulated due to the development and computerization of bibliometrics. This made it difficult to review all of the related papers published worldwide to conduct the study. However, due to the development of Natural language processing techniques, the tendency analysis of published research papers has become easier. In this study, text mining analysis using the statistical computing language R was carried out based on the bibliographic information of SCOPUS DB (Data Base) in the field of coastal and ocean engineering. As expected, the term 'wave' predominates, and it was confirmed that numerical analysis and hydraulic experiments were still dominant from the terms 'numerical model', 'numerical simulation', and 'experimental study'. In addition, recent use of the term 'wave energy' related to marine energy has been recognized. On the other hand, it was quantitatively confirmed that the frequency of connection between 'wave', and 'height' or 'energy' prevailed, and suggested the possibility of high resolution analysis by detailed field and period in the future.
Handling fuzzy query in voice search on smartphones is one of the most difficult problems. It is mainly derived from the complexity and the degree of freedom of natural language. To reduce the complexity and the degree of freedom of fuzzy query in voice search on smartphones, attribute-driven approach for fuzzy query is proposed. In addition, a new page ranking algorithm based on the values of attributes for handling fuzzy query is proposed. It provides a smartphone user with location-based personalized page ranking based on user's search intentions. It is a further step toward location-based personalized web search for smartphone users. In this paper, we design a prototype model for handling fuzzy query in voice search on smartphones and show the experimental results of the proposed approach compared to existing smartphones.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.