본 논문은 다양한 버그 추적 시스템으로부터 추출한 데이터를 통합하여 단일 저장소 모델을 제공하는 UniBAS(Unified Bug Analysis System)를 제안한다. UniBAS는 MSR(Mining Software Repositories) 연구 과정에서의 저장소 추출, 데이터 가공이나 모델 생성과 같은 공통적인 반복 작업을 줄이고, 관련 연구자가 상위 수준의 연구에 보다 집중할 수 있도록 함으로써 해당 연구 수행에 발생하는 복잡도와 비용을 줄여준다. 또한, UniBAS는 데이터 추출 뿐 아니라 질의 기반 분석에 필요한 테이블, 뷰 및 저장 프로시저 등을 자동 생성하며, 수집한 데이터 관리와 외부 도구와의 연동을 위해 다양한 형식의 파일을 생성할 수 있다. 사례 연구로 UniBAS의 유용성을 검증하기 위해 Mozilla사이트의 Firefox프로젝트를 대상으로 실제 중복 버그 리포트를 탐지하는 실험을 진행하였다. 이 과정에서 자동 추출된 자료를 대상으로 질의와 분석이 유연하게 이루어질 수 있었으며, 다양한 자연어 처리 알고리즘 적용을 통해 유효한 실험 결과를 얻을 수 있었다.
본 논문에서는 개정된 로마자 표기법에 일치하는 한글의 로마자 표기 생성을 위한 한글-로마자 표기 변환표의 생성에 관한 연구를 수행하였다. 로마자 표기법의 근간이 되는 표준 발음법과 로마자 표기법을 수학적으로 분석하기 위하여 페트리넷 모델을 이용한 자연 언어의 수학적 분석 방법을 도입하였다. 페트리넷 모델을 이용한 분석의 방법으로 한글 로마자 표기 변환 표를 생성하기 위한 방안과 로마자 표기법의 페트리 넷 모델링을 통하여 그 실질적인 예를 보여 한국어의 수학적 모델링 방안과 적용방법을 제시한다. 생성된 한글-로마자 표기 변환표를 검증하기 위하여 윈도우 기반 응용 프로그램을 개발하고 로마자 표기 용례사전의 로마자 표기와 응용 프로그램의 결과를 비교하였다.
목적 지향성 대화에서 화자의 의도는 화행과 개념열 쌍으로 구성되는 의미 구조로 근사화될 수 있다. 그러므로 지능형 대화 시스템을 구현하기 위해서는 의미 구조를 올바르게 파악하는 것이 매우 중요하다. 본 논문에서는 능동학습(active learning) 방법을 이용하여 효율적으로 의미 구조를 분석하는 모델을 제안한다. 제안 모델은 언어 분석에 따른 부담을 덜기위하여 형태소 자질들과 이전 의미 구조만을 입력 자질로 사용한다. 그리고 정확률 향상을 위하여 자연어 처리 분야에서 높은 성능을 보이고 있는 CRFs(Conditional Random Fields)를 기본 통계 모델로 사용한다. 일정 관리 영역에서 제안 모델을 실험한 결과는 기존 모델들과 비교하여 1/3 정도의 훈련데이타를 사용하고도 비슷한 정확률(화행 92.4%, 개념열 89.8%)을 나타내고 있음을 알 수 있었다.
고도화된 무기체계와 복잡한 전략으로 인하여 지휘관이 분석하고 판단해야 할 정보의 복잡도가 증가하고 있다. 지휘관의 적시적 판단을 위해서 전장의 정보를 지식화하고 분석할 수 있는 지능형 서비스가 필요하다. 지능형 서비스는 전장상황 정보로부터 지식을 추출하는 단계와 지식베이스를 구축하는 단계, 지식베이스로부터 전장상황을 분석하는 단계로 구성된다. 본 논문은 두 번째 단계에서 구축 완료된 지식베이스를 임베딩함으로써 입력 쿼리와 유사한 정보를 추출하는 방안을 연구한다. 지식베이스 임베딩을 위해 문장화 과정이 필요하며 random-walk 알고리즘을 적용한다. 문장화된 정보는 Word2Vec을 활용하여 벡터화되고 코사인 유사도를 통해 입력 쿼리와 유사한 정보를 찾는다. 본 논문에서는 오픈 지식베이스로부터 98개 개체를 기준으로 980개의 문장을 생성하고 100차원의 벡터로 임베딩함으로써 코사인 유사도 기반 유사 개체가 추출됨을 확인했다.
인터넷 기술의 발달함에 따라 많은 콘텐츠가 생산되고 그 수요가 증가하고 있다. 이에 따라 유통되고 있는 콘텐츠 수가 증가하였고, 반면에 저작권을 침해하는 불법복제물을 유포하는 건수도 증가하고 있다. 한국저작권보호원은 문자열 매칭 기반 불법복제물 추적관리시스템을 운영하고 있으며, 이를 우회하기 위해 다수의 노이즈를 삽입하므로 정확한 검색이 어려운 현실이다. 최근, 노이즈를 제거하기 위한 자연어 처리, AI 딥러닝 기술을 이용한 연구와 저작권 보호를 위한 다양한 블록체인 기술이 연구되어 있으나 한계가 있다. 본 논문에서는 온라인에서 수집한 데이터에 노이즈를 제거하고, 키워드 기반 불법복제물을 검색한다. 또한, heavy uploader 대상 프로파일링 분석을 통해 동일 heavy uploader를 추정해 간다. 향후, 불법복제물 검색기술과 heavy uploader 대상 프로파일링 분석 결과를 바탕으로 차단 및 대응기술이 결합하면 저작권 피해를 최소화할 것으로 기대한다.
자연어처리 기술과 비대면 문화의 확산과 더불어 챗봇의 사용 증가세가 가파르며, 챗봇의 용도 또한 일상 대화와 소비자 응대를 넘어서 정신건강을 위한 용도로 확장하고 있다. 챗봇은 익명성이 보장된다는 점에서 사용자들이 우울감에 관해 이야기하기 적합한 서비스이다. 그러나 사용자가 작성한 문장들을 분석해 우울 담론의 유형과 특성을 파악하는 연구들은 주로 소셜 네트워크 데이터를 대상으로 했다는 한계점이 존재하며, 실제 환경에서 사용되는 챗봇과 상호작용한 데이터를 분석한 연구는 찾아보기 힘들다. 이 연구에서는 챗봇-사람의 상호작용 데이터에서 무작위로 추출한 '우울'과 관련된 대화 데이터를 토픽 모델링 방법과 텍스트마이닝 기법으로 분석하여 채팅에서의 우울 관련 담론의 특성을 파악하였다. 또한, 챗봇에서 빈번히 나타나는 '우울' 담론의 범주와 트위터 '우울' 담론의 범주의 차이점을 비교하였다. 이를 통해 챗봇 데이터의 '우울' 대화만의 특징을 파악하고, 적절한 심리지원 정보를 제공하는 챗봇 서비스를 위한 시사점과 향후 연구 방향에 대해 논의한다.
본 논문에서는 사용자의 감정 분석에 따른 향을 추천하는 스마트 미러 시스템을 제안한다. 본 논문은 자연어 처리 중 임베딩 기법(CounterVectorizer와 TF-IDF 기법), 머신러닝 분류 기법 중 최적의 모델(DecisionTree, SVM, RandomForest, SGD Classifier)을 융합하여 시스템을 구축하고 그 결과를 비교한다. 실험 결과, 가장 높은 성능을 보이는 SVM과 워드 임베딩을 파이프라인 기법으로 감정 분류기 모델에 적용한다. 제안된 시스템은 Flask 웹 프레임워크를 이용하여 웹 서비스를 제공하는 개인감정 분석 기반 향 추천 미러를 구현한다. 본 논문은 Google Speech Cloud API를 이용하여 사용자의 음성을 인식하고 STT(Speech To Text)로 음성 변환된 텍스트 데이터를 사용한다. 제안된 시스템은 날씨, 습도, 위치, 명언, 시간, 일정 관리에 대한 정보를 사용자에게 제공한다.
딥러닝의 등장과 ICT(Information and Communication Technology)의 급속한 발전으로 정치, 경제, 문화 등 사회의 다양한 분야에서 인공지능을 활용한 연구가 활발히 진행되고 있다. 딥러닝 기반 인공지능 기술은 자연어 처리, 영상 처리, 음성 처리, 추천 시스템 등 다양한 영역으로 세분화된다. 특히, 산업이 고도화됨에 따라 시장 동향 및 개인의 특성을 분석하여 소비자에게 추천하는 추천 시스템의 필요성이 점점 더 요구되고 있다. 이러한 기술 발전에 발맞추어, 본 논문에서는 딥러닝 기반 '언어처리지능' 과 '영상처리지능'의 기술개발을 통해 정형 또는 비정형 텍스트 및 이미지 빅데이터로부터 속성 정보를 추출 추출하고, 분류하여 패션시장의 트랜드나 신규소재 등을 분석하고 소비자의 취향 분석을 통하여 '시장-소비자' 인사이트를 발굴하여, 스타일 추천, 가상 피팅, 및 디자인지원 등이 가능한 인공지능 기반 '맞춤형 패션 어드바이저' 서비스 통합 시스템을 제안한다.
AI 기술의 발달은 우리 삶의 큰 변화를 가져왔다. 생활 속에서부터 사회, 경제에 이르기 까지 AI의 영향력이 커짐에 따라 AI와 데이터에 대한 교육에 대한 중요성이 함께 커지고 있다. 특히 OECD 교육 연구 보고서 및 다양한 국내 정보과 교육과정 연구에서 데이터와 데이터 리터러시를 다루고 필수 역량으로 제시하고 있다. 국내외 연구를 살펴 보면 데이터 리터러시에 대한 정의는 연구자들 마다 그 구체적인 내용과 범위가 다른 것을 알 수 있다. 이에 데이터 리터러시 관련 주요 연구의 정의를 다각도로 분석하여 도출하고자 하였다. 주요 연구에서 데이터 리터러시를 정의를 하는데 사용된 단어 빈도 분석과 함께 Word2vec 자연어 처리 방법을 활용하여 의미 유사도를 분석하고 교육과정 연구의 내용요소를 바탕으로 최종적으로 유목화하여 '데이터를 읽고 쓸 수 있으며, 실생활의 문제를 해결하기 위해 데이터를 이해하고 사용하여 정보로 처리하는 지식 구성의 기초 능력' 의 정의를 도출하였다. 본 연구를 통해 도출된 데이터 리터러시의 정의를 바탕으로 내용이 수정 보완되고 더 많은 연구가 이루어져 학생들의 미래 역량을 키워주는 교육 연구에 좋은 기초 자료가 될 수 있기를 기대한다.
본 연구는 기계학습의 키워드 출현 빈도 분석과 CONCOR(CONvergence of iteration CORrealtion) 기법을 통한 ICT 교육에 대한 흐름을 탐색한다. 2018년부터 현재까지의 등재지 이상의 논문을 'ICT 교육'의 키워드로 구글 스칼라에서 304개 검색하였고, 체계적 문헌 리뷰 절차에 따라 ICT 교육과 관련이 높은 60편의 논문을 선정하면서, 논문의 제목과 요약을 중심으로 키워드를 추출하였다. 단어 빈도 및 지표 데이터는 자연어 처리의 TF-IDF를 통한 빈도 분석, 동시 출현 빈도의 단어를 분석하여 출현 빈도가 높은 49개의 중심어를 추출하였다. 관계의 정도는 단어 간의 연결 구조와 연결 정도 중심성을 분석하여 검증하였고, CONCOR 분석을 통해 유사성을 가진 단어들로 구성된 군집을 도출하였다. 분석 결과 첫째, '교육', '연구', '결과', '활용', '분석'이 주요 키워드로 분석되었다. 둘째, 교육을 키워드로 N-GRAM 네트워크 그래프를 진행한 결과 '교육과정', '활용'이 가장 높은 단어의 관계로 나타났다. 셋째, 교육을 키워드로 군집분석을 한 결과, '교육과정', '프로그래밍', '학생', '향상', '정보'의 5개 군이 형성되었다. 이러한 연구 결과를 바탕으로 ICT 교육 동향의 분석 및 트렌드 파악을 토대로 ICT 교육에 필요한 실질적인 연구를 수행할 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.