• 제목/요약/키워드: 자연어분석

검색결과 562건 처리시간 0.024초

다형의 버그 추적 시스템 마이닝 및 분석을 위한 저장소 독립 모델 설계 (Designing a Repository Independent Model for Mining and Analyzing Heterogeneous Bug Tracking Systems)

  • 이재권;정우성
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권9호
    • /
    • pp.103-115
    • /
    • 2014
  • 본 논문은 다양한 버그 추적 시스템으로부터 추출한 데이터를 통합하여 단일 저장소 모델을 제공하는 UniBAS(Unified Bug Analysis System)를 제안한다. UniBAS는 MSR(Mining Software Repositories) 연구 과정에서의 저장소 추출, 데이터 가공이나 모델 생성과 같은 공통적인 반복 작업을 줄이고, 관련 연구자가 상위 수준의 연구에 보다 집중할 수 있도록 함으로써 해당 연구 수행에 발생하는 복잡도와 비용을 줄여준다. 또한, UniBAS는 데이터 추출 뿐 아니라 질의 기반 분석에 필요한 테이블, 뷰 및 저장 프로시저 등을 자동 생성하며, 수집한 데이터 관리와 외부 도구와의 연동을 위해 다양한 형식의 파일을 생성할 수 있다. 사례 연구로 UniBAS의 유용성을 검증하기 위해 Mozilla사이트의 Firefox프로젝트를 대상으로 실제 중복 버그 리포트를 탐지하는 실험을 진행하였다. 이 과정에서 자동 추출된 자료를 대상으로 질의와 분석이 유연하게 이루어질 수 있었으며, 다양한 자연어 처리 알고리즘 적용을 통해 유효한 실험 결과를 얻을 수 있었다.

페트리넷을 이용한 한글-로마자 표기 변환표 생성에 관한 연구 (A Study on Creation of Hangeu-Romanization Conversion Table Using Petri-Nets)

  • 김경징;최영규;이상범
    • 정보처리학회논문지B
    • /
    • 제9B권6호
    • /
    • pp.827-834
    • /
    • 2002
  • 본 논문에서는 개정된 로마자 표기법에 일치하는 한글의 로마자 표기 생성을 위한 한글-로마자 표기 변환표의 생성에 관한 연구를 수행하였다. 로마자 표기법의 근간이 되는 표준 발음법과 로마자 표기법을 수학적으로 분석하기 위하여 페트리넷 모델을 이용한 자연 언어의 수학적 분석 방법을 도입하였다. 페트리넷 모델을 이용한 분석의 방법으로 한글 로마자 표기 변환 표를 생성하기 위한 방안과 로마자 표기법의 페트리 넷 모델링을 통하여 그 실질적인 예를 보여 한국어의 수학적 모델링 방안과 적용방법을 제시한다. 생성된 한글-로마자 표기 변환표를 검증하기 위하여 윈도우 기반 응용 프로그램을 개발하고 로마자 표기 용례사전의 로마자 표기와 응용 프로그램의 결과를 비교하였다.

능동학습법을 이용한 한국어 대화체 문장의 효율적 의미 구조 분석 (Efficient Semantic Structure Analysis of Korean Dialogue Sentences using an Active Learning Method)

  • 김학수
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권5호
    • /
    • pp.306-312
    • /
    • 2008
  • 목적 지향성 대화에서 화자의 의도는 화행과 개념열 쌍으로 구성되는 의미 구조로 근사화될 수 있다. 그러므로 지능형 대화 시스템을 구현하기 위해서는 의미 구조를 올바르게 파악하는 것이 매우 중요하다. 본 논문에서는 능동학습(active learning) 방법을 이용하여 효율적으로 의미 구조를 분석하는 모델을 제안한다. 제안 모델은 언어 분석에 따른 부담을 덜기위하여 형태소 자질들과 이전 의미 구조만을 입력 자질로 사용한다. 그리고 정확률 향상을 위하여 자연어 처리 분야에서 높은 성능을 보이고 있는 CRFs(Conditional Random Fields)를 기본 통계 모델로 사용한다. 일정 관리 영역에서 제안 모델을 실험한 결과는 기존 모델들과 비교하여 1/3 정도의 훈련데이타를 사용하고도 비슷한 정확률(화행 92.4%, 개념열 89.8%)을 나타내고 있음을 알 수 있었다.

A study on the Extraction of Similar Information using Knowledge Base Embedding for Battlefield Awareness

  • Kim, Sang-Min;Jin, So-Yeon;Lee, Woo-Sin
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권11호
    • /
    • pp.33-40
    • /
    • 2021
  • 고도화된 무기체계와 복잡한 전략으로 인하여 지휘관이 분석하고 판단해야 할 정보의 복잡도가 증가하고 있다. 지휘관의 적시적 판단을 위해서 전장의 정보를 지식화하고 분석할 수 있는 지능형 서비스가 필요하다. 지능형 서비스는 전장상황 정보로부터 지식을 추출하는 단계와 지식베이스를 구축하는 단계, 지식베이스로부터 전장상황을 분석하는 단계로 구성된다. 본 논문은 두 번째 단계에서 구축 완료된 지식베이스를 임베딩함으로써 입력 쿼리와 유사한 정보를 추출하는 방안을 연구한다. 지식베이스 임베딩을 위해 문장화 과정이 필요하며 random-walk 알고리즘을 적용한다. 문장화된 정보는 Word2Vec을 활용하여 벡터화되고 코사인 유사도를 통해 입력 쿼리와 유사한 정보를 찾는다. 본 논문에서는 오픈 지식베이스로부터 98개 개체를 기준으로 980개의 문장을 생성하고 100차원의 벡터로 임베딩함으로써 코사인 유사도 기반 유사 개체가 추출됨을 확인했다.

불법복제물 고속검색 및 Heavy Uploader 프로파일링 분석기술 연구 (High-Speed Search for Pirated Content and Research on Heavy Uploader Profiling Analysis Technology)

  • 황찬웅;김진강;이용수;김형래;이태진
    • 정보보호학회논문지
    • /
    • 제30권6호
    • /
    • pp.1067-1078
    • /
    • 2020
  • 인터넷 기술의 발달함에 따라 많은 콘텐츠가 생산되고 그 수요가 증가하고 있다. 이에 따라 유통되고 있는 콘텐츠 수가 증가하였고, 반면에 저작권을 침해하는 불법복제물을 유포하는 건수도 증가하고 있다. 한국저작권보호원은 문자열 매칭 기반 불법복제물 추적관리시스템을 운영하고 있으며, 이를 우회하기 위해 다수의 노이즈를 삽입하므로 정확한 검색이 어려운 현실이다. 최근, 노이즈를 제거하기 위한 자연어 처리, AI 딥러닝 기술을 이용한 연구와 저작권 보호를 위한 다양한 블록체인 기술이 연구되어 있으나 한계가 있다. 본 논문에서는 온라인에서 수집한 데이터에 노이즈를 제거하고, 키워드 기반 불법복제물을 검색한다. 또한, heavy uploader 대상 프로파일링 분석을 통해 동일 heavy uploader를 추정해 간다. 향후, 불법복제물 검색기술과 heavy uploader 대상 프로파일링 분석 결과를 바탕으로 차단 및 대응기술이 결합하면 저작권 피해를 최소화할 것으로 기대한다.

챗봇 데이터에 나타난 우울 담론의 범주와 특성의 이해 (Understanding the Categories and Characteristics of Depressive Moods in Chatbot Data)

  • 진효진;정찬이;백금희;차지영;최정회;차미영
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권9호
    • /
    • pp.381-390
    • /
    • 2022
  • 자연어처리 기술과 비대면 문화의 확산과 더불어 챗봇의 사용 증가세가 가파르며, 챗봇의 용도 또한 일상 대화와 소비자 응대를 넘어서 정신건강을 위한 용도로 확장하고 있다. 챗봇은 익명성이 보장된다는 점에서 사용자들이 우울감에 관해 이야기하기 적합한 서비스이다. 그러나 사용자가 작성한 문장들을 분석해 우울 담론의 유형과 특성을 파악하는 연구들은 주로 소셜 네트워크 데이터를 대상으로 했다는 한계점이 존재하며, 실제 환경에서 사용되는 챗봇과 상호작용한 데이터를 분석한 연구는 찾아보기 힘들다. 이 연구에서는 챗봇-사람의 상호작용 데이터에서 무작위로 추출한 '우울'과 관련된 대화 데이터를 토픽 모델링 방법과 텍스트마이닝 기법으로 분석하여 채팅에서의 우울 관련 담론의 특성을 파악하였다. 또한, 챗봇에서 빈번히 나타나는 '우울' 담론의 범주와 트위터 '우울' 담론의 범주의 차이점을 비교하였다. 이를 통해 챗봇 데이터의 '우울' 대화만의 특징을 파악하고, 적절한 심리지원 정보를 제공하는 챗봇 서비스를 위한 시사점과 향후 연구 방향에 대해 논의한다.

개인의 감성 분석 기반 향 추천 미러 설계 (Design of a Mirror for Fragrance Recommendation based on Personal Emotion Analysis)

  • 김현지;오유수
    • 한국산업정보학회논문지
    • /
    • 제28권4호
    • /
    • pp.11-19
    • /
    • 2023
  • 본 논문에서는 사용자의 감정 분석에 따른 향을 추천하는 스마트 미러 시스템을 제안한다. 본 논문은 자연어 처리 중 임베딩 기법(CounterVectorizer와 TF-IDF 기법), 머신러닝 분류 기법 중 최적의 모델(DecisionTree, SVM, RandomForest, SGD Classifier)을 융합하여 시스템을 구축하고 그 결과를 비교한다. 실험 결과, 가장 높은 성능을 보이는 SVM과 워드 임베딩을 파이프라인 기법으로 감정 분류기 모델에 적용한다. 제안된 시스템은 Flask 웹 프레임워크를 이용하여 웹 서비스를 제공하는 개인감정 분석 기반 향 추천 미러를 구현한다. 본 논문은 Google Speech Cloud API를 이용하여 사용자의 음성을 인식하고 STT(Speech To Text)로 음성 변환된 텍스트 데이터를 사용한다. 제안된 시스템은 날씨, 습도, 위치, 명언, 시간, 일정 관리에 대한 정보를 사용자에게 제공한다.

패션 속성기반 혼합현실 시각화 서비스 (Fashion attribute-based mixed reality visualization service)

  • 유용민;이경욱;김경선
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.2-5
    • /
    • 2022
  • 딥러닝의 등장과 ICT(Information and Communication Technology)의 급속한 발전으로 정치, 경제, 문화 등 사회의 다양한 분야에서 인공지능을 활용한 연구가 활발히 진행되고 있다. 딥러닝 기반 인공지능 기술은 자연어 처리, 영상 처리, 음성 처리, 추천 시스템 등 다양한 영역으로 세분화된다. 특히, 산업이 고도화됨에 따라 시장 동향 및 개인의 특성을 분석하여 소비자에게 추천하는 추천 시스템의 필요성이 점점 더 요구되고 있다. 이러한 기술 발전에 발맞추어, 본 논문에서는 딥러닝 기반 '언어처리지능' 과 '영상처리지능'의 기술개발을 통해 정형 또는 비정형 텍스트 및 이미지 빅데이터로부터 속성 정보를 추출 추출하고, 분류하여 패션시장의 트랜드나 신규소재 등을 분석하고 소비자의 취향 분석을 통하여 '시장-소비자' 인사이트를 발굴하여, 스타일 추천, 가상 피팅, 및 디자인지원 등이 가능한 인공지능 기반 '맞춤형 패션 어드바이저' 서비스 통합 시스템을 제안한다.

  • PDF

초·중등 인공지능 교육을 위한 데이터 리터러시 정의 연구 (A Study on the Definition of Data Literacy for Elementary and Secondary Artificial Intelligence Education)

  • 김슬기;김태영
    • 한국정보교육학회:학술대회논문집
    • /
    • 한국정보교육학회 2021년도 학술논문집
    • /
    • pp.59-67
    • /
    • 2021
  • AI 기술의 발달은 우리 삶의 큰 변화를 가져왔다. 생활 속에서부터 사회, 경제에 이르기 까지 AI의 영향력이 커짐에 따라 AI와 데이터에 대한 교육에 대한 중요성이 함께 커지고 있다. 특히 OECD 교육 연구 보고서 및 다양한 국내 정보과 교육과정 연구에서 데이터와 데이터 리터러시를 다루고 필수 역량으로 제시하고 있다. 국내외 연구를 살펴 보면 데이터 리터러시에 대한 정의는 연구자들 마다 그 구체적인 내용과 범위가 다른 것을 알 수 있다. 이에 데이터 리터러시 관련 주요 연구의 정의를 다각도로 분석하여 도출하고자 하였다. 주요 연구에서 데이터 리터러시를 정의를 하는데 사용된 단어 빈도 분석과 함께 Word2vec 자연어 처리 방법을 활용하여 의미 유사도를 분석하고 교육과정 연구의 내용요소를 바탕으로 최종적으로 유목화하여 '데이터를 읽고 쓸 수 있으며, 실생활의 문제를 해결하기 위해 데이터를 이해하고 사용하여 정보로 처리하는 지식 구성의 기초 능력' 의 정의를 도출하였다. 본 연구를 통해 도출된 데이터 리터러시의 정의를 바탕으로 내용이 수정 보완되고 더 많은 연구가 이루어져 학생들의 미래 역량을 키워주는 교육 연구에 좋은 기초 자료가 될 수 있기를 기대한다.

  • PDF

키워드 출현 빈도 분석과 CONCOR 기법을 이용한 ICT 교육 동향 분석 (Analysis of ICT Education Trends using Keyword Occurrence Frequency Analysis and CONCOR Technique)

  • 이영석
    • 산업융합연구
    • /
    • 제21권1호
    • /
    • pp.187-192
    • /
    • 2023
  • 본 연구는 기계학습의 키워드 출현 빈도 분석과 CONCOR(CONvergence of iteration CORrealtion) 기법을 통한 ICT 교육에 대한 흐름을 탐색한다. 2018년부터 현재까지의 등재지 이상의 논문을 'ICT 교육'의 키워드로 구글 스칼라에서 304개 검색하였고, 체계적 문헌 리뷰 절차에 따라 ICT 교육과 관련이 높은 60편의 논문을 선정하면서, 논문의 제목과 요약을 중심으로 키워드를 추출하였다. 단어 빈도 및 지표 데이터는 자연어 처리의 TF-IDF를 통한 빈도 분석, 동시 출현 빈도의 단어를 분석하여 출현 빈도가 높은 49개의 중심어를 추출하였다. 관계의 정도는 단어 간의 연결 구조와 연결 정도 중심성을 분석하여 검증하였고, CONCOR 분석을 통해 유사성을 가진 단어들로 구성된 군집을 도출하였다. 분석 결과 첫째, '교육', '연구', '결과', '활용', '분석'이 주요 키워드로 분석되었다. 둘째, 교육을 키워드로 N-GRAM 네트워크 그래프를 진행한 결과 '교육과정', '활용'이 가장 높은 단어의 관계로 나타났다. 셋째, 교육을 키워드로 군집분석을 한 결과, '교육과정', '프로그래밍', '학생', '향상', '정보'의 5개 군이 형성되었다. 이러한 연구 결과를 바탕으로 ICT 교육 동향의 분석 및 트렌드 파악을 토대로 ICT 교육에 필요한 실질적인 연구를 수행할 수 있을 것이다.