Objectives : The purpose of this study is to help select an appropriate word embedding method when analyzing East Asian traditional medicine texts as data. Methods : Based on prescription data that imply traditional methods in traditional East Asian medicine, we have examined 4 count-based word embedding and 2 prediction-based word embedding methods. In order to intuitively compare these word embedding methods, we proposed a "prescription generating game" and compared its results with those from the application of the 6 methods. Results : When the adjacent vectors are extracted, the count-based word embedding method derives the main herbs that are frequently used in conjunction with each other. On the other hand, in the prediction-based word embedding method, the synonyms of the herbs were derived. Conclusions : Counting based word embedding methods seems to be more effective than prediction-based word embedding methods in analyzing the use of domesticated herbs. Among count-based word embedding methods, the TF-vector method tends to exaggerate the frequency effect, and hence the TF-IDF vector or co-word vector may be a more reasonable choice. Also, the t-score vector may be recommended in search for unusual information that could not be found in frequency. On the other hand, prediction-based embedding seems to be effective when deriving the bases of similar meanings in context.
딥러닝에서 자연어 처리를 위한 텍스트 분석 기법은 워드 임베딩을 통해 단어를 벡터 형태로 표현한다. 본 논문에서는 워드 임베딩 기법과 딥러닝 기법을 이용하여 SMS 문자 메시지를 문서 벡터로 구성하고 이를 스팸 문자 메시지와 정상적인 문자 메시지로 분류하는 방법을 제안하였다. 유사한 문맥을 가진 단어들은 벡터 공간에서 인접한 벡터 공간에 표현되도록 하기 위해 전처리 과정으로 자동 띄어쓰기를 적용하고 스팸 문자 메시지로 차단되는 것을 피하기 위한 목적으로 음절의 자모를 특수기호로 왜곡하여 맞춤법이 파괴된 상태로 단어 벡터와 문장 벡터를 생성하였다. 또한 문장 벡터 생성 시 CBOW와 skip gram이라는 두 가지 워드 임베딩 알고리즘을 적용하여 문장 벡터를 표현하였으며, 딥러닝을 이용한 스팸 문자 메시지 필터링의 성능 평가를 위해 SVM Light와 정확도를 비교 측정하였다.
Purpose: Medical records classification using vectorization techniques plays an important role in natural language processing. The purpose of this study was to investigate proper vectorization techniques for electronic medical records classification. Material and methods: 403 electronic medical documents were extracted retrospectively and classified using the cosine similarity calculated by Scikit-learn (Python module for machine learning) in Jupyter Notebook. Vectors for medical documents were produced by three different vectorization techniques (TF-IDF, latent sematic analysis and Word2Vec) and the classification precisions for three vectorization techniques were evaluated. The Kruskal-Wallis test was used to determine if there was a significant difference among three vectorization techniques. Results: 403 medical documents were relevant to 41 different diseases and the average number of documents per diagnosis was 9.83 (standard deviation=3.46). The classification precisions for three vectorization techniques were 0.78 (TF-IDF), 0.87 (LSA) and 0.79 (Word2Vec). There was a statistically significant difference among three vectorization techniques. Conclusions: The results suggest that removing irrelevant information (LSA) is more efficient vectorization technique than modifying weights of vectorization models (TF-IDF, Word2Vec) for medical documents classification.
지원자 추적 시스템의 등장으로 온라인 채용이 활성화되면서 채용 사기가 심각한 문제로 대두되고 있다. 이 연구는 온라인 채용 환경에서 채용 사기를 탐지할 수 있는 신뢰할 수 있는 모델을 개발하여 비용 손실을 줄이고 개인 사생활 보호를 강화하고자 한다. 이 연구의 주요 기여는 데이터를 탐색적으로 분석하여 얻은 통찰력을 활용하여 어떤 채용 정보가 사기인지, 아니면 합법적인지를 구분할 수 있는 자동화된 방법론을 제공하는데 있다. 캐글에서 제공하는 채용 사기 데이터 집합인 EMSCAD를 사용하여 다양한 단일 분류기 및 앙상블 분류기 기반 머신러닝 모델을 훈련하고 평가하였으며, 그 결과로 앙상블 분류기인 랜덤 포레스트 분류기가 정확도 98.67%, F1 점수 0.81로 가장 좋은 결과를 보이는 것을 알 수 있었다.
상호참조해결은 주어진 문서에서 상호참조해결 대상이 되는 멘션(mention)을 식별하고, 동일한 개체(entity)를 의미하는 멘션들을 찾아 그룹화하는 자연어처리 태스크이다. 최근 상호참조해결에서는 BERT를 이용하여 단어의 문맥 표현을 얻은 후, 멘션 탐지와 상호참조해결을 동시에 진행하는 End-to-End 모델이 주로 연구가 되었다. 그러나 End-to-End 방식으로 모델을 수행하기 위해서는 모든 스팬을 잠재적인 멘션으로 간주해야 되기 때문에 많은 메모리가 필요하고 시간 복잡도가 상승하는 문제가 있다. 본 논문에서는 서브 토큰을 다시 단어 단위로 매핑하여 상호참조해결을 수행하는 워드 레벨 상호참조해결 모델을 한국어에 적용하며, 한국어 상호참조해결의 특징을 반영하기 위해 워드 레벨 상호참조해결 모델의 토큰 표현에 개체명 자질과 의존 구문 분석 자질을 추가하였다. 실험 결과, ETRI 질의응답 도메인 평가 셋에서 F1 69.55%로, 기존 End-to-End 방식의 상호참조해결 모델 대비 0.54% 성능 향상을 보이면서 메모리 사용량은 2.4배 좋아졌고, 속도는 1.82배 빨라졌다.
생명 공학 및 의학 분야의 논문 수 증가에 따라 문헌 속에서 중요한 정보를 빠르게 찾아 대응하기 위한 키워드 추출의 필요성이 대두되고 있다. 본 논문에서는 생의학 분야에서의 키워드 추출에 대한 다양한 비지도 학습 기반 모델 및 BERT 기반 모델의 성능을 종합적으로 비교하였다. 실험 결과 생의학 분야에 특화된 데이터로 학습된 BioBERT 모델이 가장 높은 성능을 보였다. 이를 통해 생의학 분야의 키워드 추출 연구에서 적절한 실험 환경을 구성하고 다양한 모델을 비교 분석하여, 향후 연구에 필요한 정확하고 신뢰할 수 있는 정보를 제공하였다. 이뿐만 아니라, 다른 분야에서도 키워드 추출에 대한 비교적인 기준과 유용한 지침을 제공할 수 있을 것이라 기대한다.
인공지능 기술이 발달함에 따라 기계번역 기술도 많은 진보를 이루었지만 여전히 기계번역을 통한 번역문 내에는 사람이 교정해야 하는 오류가 다수 포함되어있다. 이렇게 번역 모델에서 생성되는 오류를 교정하는 전문인력의 요구를 경감시키기 위하여 기계번역 사후교정 연구가 등장하였고, 해당 연구는 현재 WMT를 주축으로 활발하게 연구되고 있다. 이러한 사후교정 연구는 최근 도메인 특화 관점에서 주로 연구가 이루어지고 있으며 현재 많은 도메인에서 유의미한 성과를 내고 있다. 하지만 이런 연구들은 기존 번역문의 품질을 얼만큼 향상시켰는가에 초점을 맞출 뿐, 다른 도메인 특화 번역모델의 성능과 비교했을 때 얼마나 뛰어난지는 밝히지 않기 때문에 사후교정 연구가 도메인 특화에서 효과적으로 작용하는지 명확하게 알 수 없다. 이에 본 연구에서는 도메인 특화 번역 모델과 도메인 특화 사후교정 모델간의 성능을 비교함으로써, 도메인 특화에서 사후교정을 통해 얻을 수 있는 실제적인 성능을 검증한다. 이를 통해 사후교정이 도메인 특화 번역모델과 비교했을 때 미미한 수준의 성능을 보임을 실험적으로 확인하였고, 해당 실험 결과를 분석함으로써 향후 도메인특화 사후교정 연구의 방향을 제안하였다.
우리가 쓰는 일상 언어 중에는 언어적 직관이 없는 사람은 의미 파악이 힘든 관용표현이 존재한다. 관용표현을 이해하기 위해서는 표현에 대한 형태적, 의미적 이해가 수반되어야 하기 때문이다. 기계도 마찬가지로 언어적 직관이 없기 때문에 관용표현에 대한 자연어 처리에는 어려움이 따른다. 특히 일반표현과 중의성 관계에 있는 관용표현의 특성이 고려되지 않은 채 문자적으로만 분석될 위험성이 높다. 본 연구에서는 '관용표현은 주변 문맥과의 관련성이 떨어진다'라는 가정을 중심으로 워드 임베딩을 활용한 관용표현과 일반표현에 대한 구분을 시도하였다. 실험은 4개 표현에 대해 이루어 졌으며 Skip-gram, Fasttext를 활용한 방법을 통해 관용표현은 주변 단어들과의 유사성이 떨어짐을 확인하였다.
분절을 통한 양질의 입력 자질을 구성하는 것은 언어모델의 문장에 대한 이해도를 높이기 위한 필수적인 단계이다. 분절은 문장의 의미를 이해하는 데 있어 중요한 역할을 하기 때문이다. 따라서, 한국어 문장 분류 태스크를 수행함에 있어 한국어의 특징에 맞는 분절 기법을 선택하는 것은 필수적이다. 명확한 판단 기준 마련을 위해, 우리는 한국어 문장 분류 태스크에서 가장 효과적인 분절 기법이 무엇인지 감성 분석, 자연어 추론, 텍스트 간 의미적 유사성 판단 태스크를 통해 검증한다. 이 때 비교할 분절 기법의 유형 분류 기준은 언어학적 단위에 따라 어절, 형태소, 음절, 자모 네 가지로 설정하며, 분절 기법 외의 다른 실험 환경들은 동일하게 설정하여 분절 기법이 문장 분류 성능에 미치는 영향만을 측정하도록 한다. 실험 결과에 따르면 자모 단위의 분절 기법을 적용한 모델이 평균적으로 가장 높은 성능을 보여주며, 반복 실험 간 편차가 적어 일관적인 성능 결과를 기록함을 확인할 수 있다.
자연어 처리 분야는 최근에 큰 발전을 보였으며, 특히 초대규모 언어 모델의 등장은 이 분야에 큰 영향을 미쳤다. GPT와 같은 모델은 다양한 NLP 작업에서 높은 성능을 보이고 있으며, 특히 챗봇 분야에서 중요하게 다루어지고 있다. 하지만, 이러한 모델에도 여러 한계와 문제점이 있으며, 그 중 하나는 모델이 기대하지 않은 결과를 생성하는 것이다. 이를 해결하기 위한 다양한 방법 중, Retrieval-Augmented Generation(RAG) 방법이 주목받았다. 이 논문에서는 지식베이스와의 통합을 통한 도메인 특화형 질의응답 시스템의 효율성 개선 방안과 벡터 데이터 베이스의 수정을 통한 챗봇 답변 수정 및 업데이트 방안을 제안한다. 본 논문의 주요 기여는 다음과 같다: 1) QA Pair Passage RAG을 활용한 새로운 RAG 시스템 제안 및 성능 향상 분석 2) 기존의 LLM 및 RAG 시스템의 성능 측정 및 한계점 제시 3) RDBMS 기반의 벡터 검색 및 업데이트를 활용한 챗봇 제어 방법론 제안
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.