• Title/Summary/Keyword: 자연방사성 물질

Search Result 66, Processing Time 0.032 seconds

Analysis of the Thermal and Structural Stability for the CANDU Spent Fuel Disposal Canister (CANDU 처분용기의 열적-구조적 안정성 평가)

  • Lee, Jong-Youl;Cho, Dong-Geun;Kim, Seong-Gi;Choi, Heui-Joo;Lee, Yang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.3
    • /
    • pp.217-224
    • /
    • 2008
  • In deep geological disposal system, the integrity of a disposal canister having spent fuels is very important factor to assure the safety of the repository system. This disposal canister is one element of the engineered barriers to isolate and to delay the radioactivity release from human beings and the environment for a long time so that the toxicity does not affect the environment. The main requirement in designing the deep geological disposal system is to keep the buffer temperature below 100$^{\circ}C$ by the decay heat from the spent fuels in the canister in order to maintain the integrity of the buffer material. Also, the disposal canister can endure the hydraulic pressure in the depth of 500 m and the swelling pressure of the bentonite as a buffer. In this study, new concept of the disposal canister for the CANDU spent fuels which were considered to be disposed without any treatment was developed and the thermal stability and the structural integrity of the canister were analysed. The result of the thermal analysis showed that the temperature of the buffer was 88.9$^{\circ}C$ when 37 years have passed after emplacement of the canister and the spacings of the disposal tunnel and the deposition holes were 40 m and 3 m, respectively. In the case of structural analysis, the result showed that the safety factors of the normal and the extreme environment were 2.9 and 1.33, respectively. So, these results reveal that the canister meets the thermal and the structural requirements in the deep geological disposal system.

  • PDF

Hydrogeochemical Characteristics and Natural Radionuclides in Groundwater for Drinking-water Supply in Korea (국내 음용지하수의 수리지화학 및 자연방사성물질 환경 특성)

  • Jeong, Do-Hwan;Kim, Moon-Su;Lee, Young-Joon
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.133-142
    • /
    • 2011
  • A total of 247 samples were collected from groundwater being used for drinking-water supply, and hydrogeochemistry and radionuclide analysis were performed. In-situ analysis of groundwaters resulted in ranges of $13.7{\sim}25.1^{\circ}C$ for temperature, 5.9~8.5 for pH, 33~591 mV for Eh, $66{\sim}820{\mu}S/cm$ for EC, and 0.2~9.4 mg/L for DO. Major cation and anion concentrations of groundwaters were in ranges of 0.5~227.6 for Na, 1.0~279.3 for Ca, 0.0~9.3 for K, 0.1~100.1 for Mg, 0.0~3.3 for F, 0.9~779.1 for Cl, 0.3~120.4 for $SO_4$, 0.0~27.4 for $NO_3$-N, and 6~372 mg/L for $HCO_3$. Uranium-238 and radon-222 concentrations were detected in ranges of N.D-$131.1{\mu}g/L$ and 18-15,953 pCi/L, respectively. In case of some groundwaters exceeding USEPA MCL level ($30{\mu}g/L$) for uranium concentration, their pH ranged from 6.8 to 8.0 and Eh showed a relatively low value(86~199 mV) compared to other areas. Most groundwaters belonged to Ca-(Na)-$HCO_3$ type, and groundwaters of metamorphic rock exhibited the highest concentration of Na, Mg, Ca, Cl, $NO_3$-N, U, and those of plutonic rock showed the highest concentration of $HCO_3$, and Rn. Uranium and fluoride from granite areas did not show any correlation. However, uranium and bicarbonate displayed a positive relation of some areas in plutonic rocks($R^2$=0.3896).

Characteristics of Groundwater Environment in Highly Enriched Areas of Natural Radionuclides (고함량 자연방사성물질 우려지역에 대한 지하수 환경 특성 연구)

  • Jeong, Do-Hwan;Eom, Ig-Chun;Yoon, Jeong-Ki;Kim, Moon-Su;Kim, Yeong-Kyoo;Kim, Tae-Seung
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.6
    • /
    • pp.9-16
    • /
    • 2010
  • Groundwater sampling was performed at 38 wells where they are located in the areas with high uranium and radon (marked as A and B, respectively) concentrations, which were based on the previous research results. In-situ parameters (temperature, pH, EC, Eh, DO) and natural radionuclides (uranium and radon) were analyzed to figure out the characteristics of groundwater environments. In-situ data did not show any relations to natural radionuclide data, which could be caused by groundwater mixing, depths of wells, and geological settings, etc. But the highest radon well presented relatively low temperature value and the highest uranium well presented relatively low pH values The highest uranium concentration ranging $1.14{\sim}188.19{\mu}g/L$ showed in the area of A region consisted of Jurassic two-mica granite. The areas of Jurassic biotite granite and Cretaceous granite in the A region have the uranium concentrations ranging $0.10{\sim}49.78{\mu}g/L$ and $0.36{\sim}3.01{\mu}g/L$, respectively. The uranium values from between wells of community water systems (CWSs) penetrating fractured bed-rock aquifers and personal boreholes settled in shallow aquifers near the wells of CWSs show big differences. It implies that the groundwaters of the two areas have evolved from different water-rock interaction paths that may caused by various types of wells having different aquifers. High radon activities in the area of B region composed of Precambrian gneiss showed ranging from 6,770 to 64,688 pCi/L. Even though the wells are located in the same geological settings, their rodon concentration presented different according to depth and distance.

Annually Reproductive Cycles of Gonadotropic Cells, Endocrine Materials and Plasma Components in Special Relation to Oogenesis in Rainbow Trout, Oncorhynchus mykiss (번식주기에 있어서 자성무지개송어 (Oncorhynchus mykiss) 뇌하수체의 생식소자극호르몬 분비세포와 난형성에 특이하게 작용하는 내분비물질 및 혈장성분의 연중변화)

  • Yoon, Jong-Man;Kim, Gye-Woong;Park, Kwan-Ha
    • Applied Microscopy
    • /
    • v.31 no.1
    • /
    • pp.19-35
    • /
    • 2001
  • Outlines for plasma $estradiol-17\beta$, components, electrophoretic patterns, and ultrastructural changes were obtained in female rainbow trout (Oncorhynchus mykiss) during the seasonal reproductive cycles. Plasma $estradiol-17\beta$ under the natural conditions, exhibited distinct seasonal variation, peaking very late in vitellogenic season during September, decreasing gradually the halt of spawning in December, and ultimately falling during the early stages of seasonal ovarian recrudescence in February and March. This change in $estradiol-17\beta$ appeared to stimulate vitellogenin production as evidenced by increases in plasma calcium, phosphorus, glucose, albumin and total protein levels. The electrophoretic patterns of late maturing or spawning oocytes were stained more intensively than those of late perinucleolus oocytes (molecular weights of approximately 70,000 and 200,000). Two protein bands were found in the SDS-PAGE separation, coincident with the $estradiol-17\beta$ hormone peak. Gonadosomatic indices (GSI) significantly increased from October to January, and showed the highest peak in January, coinciding with the numerically abrupt increase of ripe ova in female. A positive correlation (r=0.701, p<0.01) was established between plasma $estradiol-17\beta$ levels and the gonadosomatic index during the prespawning. The highest level of hepatosomatic index (HSI) observed in December. During the breeding season (December), the gonadotropes were large and filled with GTH-containing inclusions such as granules and globules. The vitellogenic phase began as late perinurleolus oocytes became transformed into early maturing oocytes through the accumulation of yolk, and oocytes reached the late maturing stages as the ooplasm was completely packed with yolk. Marked ultrastructural changed in the granulosa cells during nuclear migration involve the dilation of the rough endoplasmic reticulum and the appearance of the rod-shaped mitochondria with tubular cristae. Microvilli (finger-like projections), from the zona radiata and from the oocyte grew, and made contact with each other in the pore canals of the zona radials during vitellogenesis, but were withdrawn as the zona radiata became more compact and devoid of pore canals during oocyte maturation. The zona radiata grew to a tripartite structure such as an outer thin homogeneous layer, and two inner thick helicoidal layers (zona radials interna and zona radiata externa). Under the normal conditions, the ovarian follicle influenced the histological development and periodical secretion of the hormones , sufficient for a oogenesis and gonadal steroid production.

  • PDF

A Study on Artificial Radionuclides(134Cs, 137Cs and 239+240Pu) Distribution in the Sediment from Lake Euiam (의암호 퇴적물 내 인공방사성동위원소 (134Cs, 137Cs, 239+240Pu) 분포특성 연구)

  • Kim, Seung Hwan;Lee, Sang-Han;Oh, Jung Suk;Choi, Jong Ki;Kang, Tae Gu
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.4
    • /
    • pp.223-230
    • /
    • 2015
  • The objective of this study is to identify the radionuclide distribution in public water by carrying out the analysis of artificial radionuclides($^{134}Cs$, $^{137}Cs$, $^{239+240}Pu$), natural radionuclide($^{210}Pb$) and TOC in the lake Euiam sediment in Chuncheon, South Korea. The $^{134}Cs$ concentration in all lake sediments showed below MDA values, and the $^{137}Cs$ concentration in lake sediment were ranged from MDA to $8.79Bq{\cdot}kg^{-1}-dry$. The $^{137}Cs$ concentrations in surface sediment were reported to be 2.4 to $4.2Bq{\cdot}kg^{-1}-dry$. The lowest concentration of $^{137}Cs$ was reported at St. 4 and the highest concentration was reported at St. 3, respectively. The $^{239+240}Pu$ concentration in lake sediment were ranged from 0.049 to $0.47Bq{\cdot}kg^{-1}-dry$. The lowest concentration was reported at St. 2 and the highest concentration was reported at St. 3. The correlation(r) between the $^{239+240}Pu$ concentration and $^{137}Cs$ concentration in lake sediment presented higher values (0.54 to 0.97) and this suggests the behavior and origin of $^{137}Cs$ is identical to the $^{239+240}Pu$ in the sediment. The $^{134}Cs$ concentration below MDA value and the $^{239+240}Pu/^{137}Cs$ ratio(mean value of 0.041) indicated that the artificial radionuclides in the sediment were originated from global fallout by the atmospheric testing of nuclear weapons conducted by former USSR and U.S.A, but not from the Fukushima Daiichi NPP accident. The sedimentation rate derived from $^{210}Pb$ age-dating method at St. 2 is calculated to be $0.31{\pm}0.06cm{\cdot}y^{-1}$. This value is similar to the value ($0.41{\pm}0.05cm{\cdot}y^{-1}$) estimated from the $^{137}Cs$ maximum peak produced from early 1960's. The content of TOC in lake Euiam sediments varied from 0.20 to 13.01%. While the highest correlation between TOC and $^{137}Cs$ concentration in the sediment were found at St. 1, the others presented the low correlation.

Analysis of the Spent Fuel Cooling Time for a Deep Geological Disposal (심지층 처분을 일한 사용후핵연료 냉각기간 분석)

  • Lee, Jong-Youl;Cho, Dong-Geun;Choi, Heui-Joo;Choi, Jong-Won;Lee, Yang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.1
    • /
    • pp.65-72
    • /
    • 2008
  • The purpose of the HLW deep geological disposal is to isolate and to delay the radioactive material release to human beings and the environment for a long time so that the toxicity does not affect to the environment. The main requirements for the HLW repository design is to keep the buffer temperature below $100\;^{\circ}C$ in order to maintain its integrity. So the cooling time of spent fuels discharged from the nuclear power plant is the key consideration factors for efficiency and economic feasibility of the repository. The disposal tunnel/disposal hole spacing, the disposal area and thermal capacity required for the deep geological repository layout which satisfies the temperature requirement of the disposal system is analyzed to set the optimized spent fuels cooling time. To do this, based on the reference disposal concept, thermal stability analyses of the disposal system have been performed and the derived results have been compared by setting the spent fuels cooling time and the disposal tunnel/disposal hole spacing in various ways. From these results, desirable spent fuels cooling time in view of disposal area is derived. The results shows that the time reaching the maximum temperature within the design limit of the temperature in the disposal site is likely shortened as the cooling time of spent fuels becomes short. Also it seems that the temperature-rising and-dropping patterns in the disposal site are of smoothly varying form as the cooling time of spent fuels becomes long. In addition, it is revealed that a desirable cooling time of spent fuels is approximately 40-50 years when spent fuels are supposedly disposed in the deep geological disposal site with its structural scale under consideration in this study.

  • PDF

Sorption and Ion Exchange Characteristics of Chabazite: Competition of Cs with Other Cations (차바자이트의 흡착 및 이온 교환 특성: Cs 및 다른 양이온과의 경쟁)

  • Baek, Woohyeon;Ha, Suhyeon;Hong, Sumin;Kim, Seonah;Kim, Yeongkyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.59-71
    • /
    • 2016
  • To investigate the sorption characteristics of Cs, which is one of the major isotopes of nuclear waste, on natural zeolite chabazite, XRD, EPMA, EC, pH, and ICP analysis were performed to obtain the informations on chemical composition, cation exchange capacity, sorption kinetics and isotherm of chabazite as well as competitive adsorption with other cations ($Li^+$, $Na^+$, $K^+$, $Rb^+$, $Sr^{2+}$). The chabazite used in this experiment has chemical composition of $Ca_{1.15}Na_{0.99}K_{1.20}Mg_{0.01}Ba_{0.16}Al_{4.79}Si_{7.21}O_{24}$ and its Si/Al ratio and cation exchange capacity (CEC) were 1.50 and 238.1 meq/100 g, respectively. Using the adsorption data at different times and concentrations, pseudo-second order and Freundlich isotherm equation were the most adequate ones for kinetic and isotherm models, indicating that there are multi sorption layers with more than two layers, and the sorption capacity was estimated by the derived constant from those equations. We also observed that equivalent molar fractions of Cs exchanged in chabazite were different depending on the ionic species from competitive ion exchange experiment. The selectivity sequence of Cs in chabazite with other cations in solution was in the order of $Na^+$, $Li^+$, $Sr^{2+}$, $K^+$ and $Rb^+$ which seems to be related to the hydrated diameters of those caions. When the exchange equilibrium relationship of Cs with other cations were plotted by Kielland plot, $Sr^{2+}$ showed the highest selectivity followed by $Na^+$, $Li^+$, $K^+$, $Rb^+$ and Cs showed positive values with all cations. Equilibrium constants from Kielland plot, which can explain thermodynamics and reaction kinetics for ionic exchange condition, suggest that chabazite has a higher preference for Cs in pores when it exists with $Sr^{2+}$ in solution, which is supposed to be due to the different hydration diameters of cations. Our rsults show that the high selectivity of Cs on chabazite can be used for the selective exchange of Cs in the water contaminated by radioactive nuclei.

Environmental Characteristics of Natural Radionuclides in Groundwaters in Volcanic Rock Areas: Korea (국내 화산암 지역 지하수 중 자연방사성 물질에 대한 환경 특성)

  • Jeong, Do Hwan;Kim, Moon Su;Ju, Byoung Kyu;Hong, Jung Ki;Kim, Dong Su;Kim, Hyun Koo;Kim, Hye Jin;Park, Sun Hwa;Han, Jin Seok;Kim, Tae Seung
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.36-45
    • /
    • 2013
  • We analyzed natural radionuclides in 80 wells in volcanic rock areas and investigated environmental characteristics. Uranium and radon concentrations ranged from ND to $9.70{\mu}g/L$ (median value: 0.21) ${\mu}g/L$, 38~29,222 pCi/L (median value: 579), respectively. In case of gross-${\alpha}$, 26 samples exceeded MDA (minimum detectable activity, < 0.9 pCi/L) value and the activity values ranged from 1.05 to 8.06 pCi/L. The radionuclides concentrations did not exceed USEPA MCL (maximum contaminant level) value of Uranium ($30{\mu}g/L$) and gross-${\alpha}$ (15 pCi/L). But Rn concentrations in 4 samples exceeded USEPA AMCL (Alternative maximum contaminant level, 4,000 pci/L) and one of them showed a significantly higher value (29,222 pCi/L) than the others. The levels of uranium concentrations in volcanic rock aquifer regions were detected in order of andesite, miscellaneous volcanic rocks, rhyolite, basalt aquifer regions. Radon, however, was detected in order of miscellaneous volcanic rocks, rhyolite, andesite, basalt aquifer regions. The correlation coefficient between uranium and radon was r = 0.45, but we found that correlations of radionuclides with in-situ data or major ions were weak or no significant. The correlation coefficient between the depth of wells and uranium concentrations was a slightly higher than that of depth of wells and radons. Radionuclide concentrations in volcanic rock aquifers showed lower levels than those of other rock aquifers such as granite, metamorphic rock aquifers, etc. This result may imply difference of host rock's bearing-radioactive-mineral contents among rock types of aquifers.

Monitoring of Radioactivity and Heavy Metal Contamination of Dried Processed Fishery Products (건조 수산가공식품의 방사능 및 중금속 오염도 조사)

  • Lee, Ji-Yeon;Jeong, Jin-A;Jeon, Jong-Sup;Lee, Seong-Bong;Kwon, Hye-Jung;Kim, Jeong-Eun;Lee, Byoung-Hoon;Mo, A-Ra;Choi, Ok-Kyung
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.3
    • /
    • pp.248-256
    • /
    • 2021
  • A total of 120 samples corresponding to 12 categories of dried processed fishery products distributed in Gyeonggi-do were examined for radioactivity contamination (131I, 134Cs, 137Cs) and heavy metals (lead, cadmium, arsenic, and mercury). One natural radioactive material, 40K, was detected in all products, while the artificial radioactive materials 131I, 134Cs and 137Cs were not detected at above MDA (minimum detectable activity) values. The detection ranges of heavy metals converted by biological basis were found as follows: Pb (N.D.-0.332 mg/kg), Cd (N.D.-2.941 mg/kg), As (0.371-15.007 mg/kg), Hg (0.0005-0.0621 mg/kg). Heavy metals were detected within standard levels when there was an acceptable standard, but the arsenic content was high in most products, although none of the products had a permitted level of arsenic. In the case of dried processed fishery products, there are products that are consumed by restoring moisture to its original state, but there are also many products that are consumed directly in the dry state, so it will be necessary to set permitted levels for heavy metals considering this situation in the future. In addition, Japan has decided to release contaminated water from the Fukushima nuclear power plant into the ocean, so there is high public concern about radioactivity contamination of food, including fishery products. Therefore, continuous monitoring of various food items will be necessary to ease consumers' anxiety.

Assessment of Gamma-radiation dose Rate in the Ogcheon Lower Phyllite Area, Goesan County, Korea, Using Gamma-ray Spectrometry (감마선분광분석기를 이용한 괴산 옥천하부천매암대 일대의 감마선량 평가)

  • Yun, Uk;Cho, Byong-Wook
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.461-468
    • /
    • 2019
  • Gamma-radiation dose rates were measured at 77 points around the Ogcheon lower phyllite zone (og2) in Goesan County, Korea, using gamma-ray spectrometry. Sample K contents were in the range 1.8-8.8% (average 4.6%), highest in Kgr. The eU contents were 0.2-217.9 ppm (average 16.7 ppm), highest in og2 (median 29.6 ppm). The eTh contents were 11.9-76.5 ppm (average 29.5 ppm) and the average eTh content of Kgr was 45.4 ppm, higher than those of Ogcheon meta-sedimentary rocks (og1, og2, and og3) (26.6-30.6 ppm). Except for some high-uranium sites in og2, 40K is the main radioactive material contributing to the gamma-radiation dose in the study area. Our results indicate that the outdoor effective dose rate of the area is 0.08-1.71 mSv y-1 (average 0.28 mSv y-1), with most areas apart from three points in og2 displaying dose rates <1 mSv y-1, which is the normal natural radiation background level.