• Title/Summary/Keyword: 자속양자

Search Result 4, Processing Time 0.017 seconds

저온에서의 전기재료

  • Cho, Cheol
    • 전기의세계
    • /
    • v.23 no.1
    • /
    • pp.21-25
    • /
    • 1974
  • BCS이론-고체양자론의 입장에서 초전도성을 구명함 - 즉 paired electron의 기원 paired electron과 normal electron간의 energy gap의 존재 자속의 양자화 Josephson tunmeling effect등에 대해서는 지면관계로 생략했고 주로 현상론적으로 극히 개략적으로 기술하게 되었으며 특히 응용부분에서는 극히 최근의 동향만을 간단하게 소개하였다.

  • PDF

Sub-pico-Newton Quantum Weight (서브피코뉴톤 양자 분동)

  • Choi J.H.;Choi M.S.;Kim M.S.;Park Y.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.81-84
    • /
    • 2005
  • We suggest flux quantum-based mechanism for force realization in the sub-pico-Newton range. By controlling the number of flux quantum in a superconducting ring, a force can be created as an integer multiple of a constant force step. For a 50 nm-thick Nb ring with the inner and outer radii of $5{\mu}m\;and\;10{\mu}m$, respectively, the force step is estimated to be 165 fN, assuming the magnetic field gradient of 10 T/m. We also estimated a maximum force limit to be $1\sim2$ pN.

  • PDF

CERN이 제안한 미임계 평형 원자로에 대한 소고

  • 노태완;이지영;이재중
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.96-101
    • /
    • 1997
  • 양자가속기를 외부 중성자 공급원으로 하여 미임계 운전을 가능하게 하고 토륨을 핵연료로 사용하므로 장주기 핵종과 핵무기 재료물질의 발생량을 현저히 줄일 수 있는 새로운 노형인 energy amplifier에 대한 연구가 CERN을 중심으로 활발히 진행되고 있다. 본 연구에서는 토륨주기에 대하여 고정 중성자속 조사에 의한 핵분열 및 방사붕괴에 관한 모델을 정립하여 다수의 연립선형 미분방정식으로 구성하여 Runge Kutta 5-6차 자동시간 간격 수치해법을 이용하여 계산하였다. 결과는 1014의 고정 중성자속에 대하여 충분한 U233의 생산이 평형상태에 도달하고 장주기 핵종도 우라늄 주기에 비하여 현저히 줄어듬을 보이므로 가속기를 이용한 토륨 핵연료 주기의 타당성을 확인하였다.

  • PDF

Chlorophyll Fluorescence, Chlorophyll Content, Graft-taking, and Growth of Grafted Cucumber Seedlings Affected by Photosynthetic Photon Flux of LED Lamps (LED 램프의 광합성유효광양자속이 오이접목묘의 엽록소형광, 엽록소함량, 활착 및 생장에 미치는 영향)

  • Kim, Hyeong Gon;Lee, Jae Su;Kim, Yong Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.27 no.3
    • /
    • pp.231-238
    • /
    • 2018
  • Chlorophyll fluorescence, chlorophyll content, graft-taking and growth of grafted cucumber seedlings as affected by photosynthetic photon flux (PPF) of LED lamps were analyzed in this study. Four PPF levels, namely 25, 50, 100, $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ were provided to investigate the effect of light intensity on the chlorophyll fluorescence, chlorophyll content, graft-taking and growth of grafted cucumber seedlings. Air temperature, relative humidity, and photoperiod for graft-taking were maintained at $25^{\circ}C$, 90%, $16h{\cdot}d^{-1}$, respectively. Maximum quantum yield (Fv/Fm) of rootstock as affected by PPF was found to be 0.84-0.85 and there was no significant change in Fv/Fm. Even though Fv/Fm of scion measured at 2 days after grafting was lowered to 0.81-0.82, after then it gradually increased with increasing PPF. At 4 days after grafting, the chlorophyll content extracted from scion increased with increasing PPF. Graft-taking ratio of grafted cucumber seedlings was 90-95% as PPF was ranged from $25{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ to $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. However, the graft-taking ratio of grafted seedlings healed under PPF of $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ was decreased to 80%. Maximum PPF measured required for smooth joining of rootstock and scion was assumed to be $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. At healing stage of grafted cucumber seedlings, Fv/Fm of scion decreased and at least two days after grafting were required for rooting of grafted seedlings. Chlorophyll fluorescence response of rootstock and scion was linked to light irradiation. Therefore, it was concluded that physical environment including light and humidity during healing process of grafted seedlings should be controlled more precisely to facilitate root formation and to prevent scion from lowering Fv/Fm. Further studies are required to investigate the effects of root development and joining of vascular bundles of grafted seedlings on the chlorophyll content of scion.