• 제목/요약/키워드: 자소 인식

검색결과 101건 처리시간 0.026초

멀티모달 인터페이스를 위한 음성 및 문자 공용 인식시스템의 구현 (An On-line Speech and Character Combined Recognition System for Multimodal Interfaces)

  • 석수영;김민정;김광수;정호열;정현열
    • 한국멀티미디어학회논문지
    • /
    • 제6권2호
    • /
    • pp.216-223
    • /
    • 2003
  • 본 논문에서는 음성과 온라인 문자를 단일시스템으로 인식할 수 있는 음성 문자 공용인식 시스템을 제안한다. 일반적으로 CHMM(Continuous Hidden Markov Model)은 음성인식과 온라인 문자인식을 위해 매우 유용한 도구로 잘 알려져 있으나, 인식을 위해서는 각각을 독립 시스템으로 구현하고 있어 추가적인 메모리와 계산량을 요구한다. 제안한 공용인식 시스템은 음성인식과 문자인식을 결합하기 위하여 이들을 동일한 CHMM모델로 구성한 후 상태단위로 지속정보를 제어하는 OPDP(One Pass Dynamic Programming) 알고리즘을 통하여 음성과 문자를 인식할 수 있는 확률 통계적 시스템을 구현하였다. 음성은 MFCC(Mel Frequency Cepstrum Coefficient) 파라미터, 문자는 위치 변화량 파라미터와 비트맵 파라미터를 사용하였으며, MLE(Maximum Likelihood Estimation) 추정법을 이용하여 음소와 자소를 결합한 115개의 3상태 9천이 CHMM모델을 구성하였다. 공용인식기의 실험결과 음소 인식률 51.65%, 음성 단어 인식률 88.6%, 자소 인식률 85.3%, 필기체 단어인식률 85.6%를 나타내어 공용인식의 유효함을 확인할 수 있었다.

  • PDF

오프라인 필기체 한글 인식을 위한 자소 내 자획의 분리 (Stroke Extraction in Phoneme for Off-Line Handwritten Hangul Recognition)

  • 정민철
    • 한국산학기술학회논문지
    • /
    • 제7권3호
    • /
    • pp.385-392
    • /
    • 2006
  • 본 논문은 오프라인 필기체 한글 인식을 위한 요소 기술의 하나인 자소 분할을 위한 새로운 자획 추출법을 제안한다. 수평 런 길이를 이용하여 자소의 자획을 수직, 경사, 수평으로 구분 분리한다. 수직 자획이나 경사 자획의 수평 런 길이는 자획 두에가 되며, 수평 자획의 수평 런의 개수가 자획 두께가 된다. 수평 자획을 분리 추출한 후, 끊어진 수직, 경사 자획을 자획 두께의 수평 런으로 연결하여 분리한 자획들이 문자의 특징을 나타내게 한다. 추출된 자획들은 온라인 필기체 한글 인식 시스템에서 개발 사용되고 있는 자획 사전 정합을 통해 문자 인식을 할 수 있다.

  • PDF

Path Following 에 의한 자모추출 한글인식 Algorithm (Hangul Recognition Using The Path Following Algorithm)

  • 황도찬;김성식
    • 산업공학
    • /
    • 제3권2호
    • /
    • pp.53-62
    • /
    • 1990
  • 본 연구는 컴퓨터에 의한 인쇄체 한글의 인식방법을 제안하고 있다. 일반적인 인식방법에서는 세선화과정 후의 이미지를 처리하고 있으나, 본 연구는 이 과정을 거치지 않고 원 이미지로부터 직업 패턴점들을 찾아내고, 이들을 이용하여 획을 결정하고 자모를 분리하였다. 문자 판별시에는 한글 의사 결정 나무(Decision-Tree)를 이용하여 자소를 분리하고 판별하였다. 본 연구는 자형에 관계없는 인식 방법을 제안 하였으므로 필기체 한글 인식에 기초를 제공하게 된다.

  • PDF

수정된 Neocognitron을 사용한 필기체 한글인식 (Study on the Neural Network for Handwritten Hangul Syllabic Character Recognition)

  • 김은진;백종현
    • 인지과학
    • /
    • 제3권1호
    • /
    • pp.61-78
    • /
    • 1991
  • 본 논문은 역행 통로(backward path)를 가진 수정된 Neocognitron 을 한글 음절 인식을 위해 적용한 결과에 관한 것이다. Fukushima의 논문에서 Neocognitron이 $19{\times}19$ 크기의 필기체 숫자를 인식할 수있다고 논술하였다. 본 논문에서는 스캐너 또는 마우스를 이용하여 필기체 한글 문자 또는 그 일부의 $61{\times}61$ 영상을 입력하였다. 수정된 Neocognitron은 3쌍의 Us, Uc층으로 구성되어있다. 본 신경회로망에서 마지막 인식층인 Uc층은 $5{\times}5$ 크기의 세포로 된 24개의 명(plane)으로 구성되어 있는데, 각각의 세포들은 동시에 주의력(attention)을 받아들이느 자소(grapheme)의 존재와 입력층에서의 상대적 위치를 구별할 수 있다. 본 신경회로망은 10개의 단모음 자소, 14개의 단자음 자소와 그들의 공간적 특징을 가지고 학습시켰다. 쉽게 학습되지 않는 패턴들은 여러번 학습시켰다. 왜곡, 잡음, 크기변화, 변형, 회전 등을 갖는 개개의 자소를 분류할 수 있도록 학습된 신경망을 한글 음절의 인식을 위해 사용하였으며, 음절자내의 영상 분할 작업을 위해 선택적 주의력 기법을 사용하였다. 입력문자에 대한 초기 표본 실험에서 본 모형은 필기체 한글 음절자의 시험패턴중 79%를 정확하게 인식하였다. 이 연구결과는 Neocognitron이 입력 영상을 인식가능한 부분으로 분할함으로써 큰크기의 분자 집합을 갖는 필기체 문자를 인식할수 있는 강력한 모형임을 시사해준다. 똑같은 접근 방법이 구조나 자소가 아주 복잡한 한자의 인식에도 적용될 수 있다고 본다. 그러나, 모의실험에서 처리시간에 있어 매우 심한 병목현상을 보여 주었다. 모형의 실질적인 사용을 위해서는 신경칩으로서의 구현이 선결되어야 할 것이다. 또, 복모음, 복자음으로 구성된 한글 음절자 인식을 위하여 모형에 대한 더 깊은 연구가 수행되어질 필요가 있다. 두개의 단자모사이의 이웃지역을 정확히 인식하는 것은 이렇나 작업을 위해 매우 중요한 일이 될 것이다.

擴張된 DP 매칭법에 依한 흘림체 한글 온라인 認識 (On-Line Recognition of Cursive Hangeul by Extended DP Matching Method)

  • 이의동;김태균
    • 대한전자공학회논문지
    • /
    • 제26권1호
    • /
    • pp.29-37
    • /
    • 1989
  • 본 논문은 DP(dynamic programming) 매칭법을 확장하여 흘림체 한글을 온라인으로 인식하는 방법에 대하여 논한 것이다. 한글의 자소는 보다 간단한 자소에 선분이 점차로 추가되어 보다 복잡한 구조로 발전되는 특징이 있다. 자소의 조합에 의해 구성되는 한글에는 유사한 문자 패턴이 많다. 이러한 특성으로 인하여 한글에 대하여 DP매칭법을 적용하여도, 입력문자와 표준문자와의 패턴간 거리를 정확하게 구하는 것이 곤란하다. 본 방식에서는 DP매칭을 행하기 전에, 한글의 최초, 최후선분의 특성을 살린 대분류매칭을 행함으로써 DP매칭의 대상수를 줄였다. 본 방식은 DP매칭법에 자소패턴의 추출기능을 부가함으로써, DP매칭을 확장하여, 한글의 문자패턴간의 거리를 정확하게 측정하는 것을 시도한다. 자소패턴의 추출은, 자소패턴을 구성하는 선분의 ON/OFF, 방향코오드, 방향코오드의 변화, 배치 구조등을 조사함으로써 행한다. 이와같이 하므로써 필기운동 변화의 흡수와 비교적 안정된 스트로크의 분리가 가능함을 확인하였다.

  • PDF

자소분할과 픽셀분포를 이용한 한글문자인식 (Recognition of Hangeul Character Using Grapheme Segmentation and Pixel Distribution)

  • 조영국;이동욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1919_1920
    • /
    • 2009
  • 한글 문자 인식에 관한 연구는 통계적 방법과 구조적 방법, 신경 회로망 등 다양한 방법론이 제시되어 왔다. 그러나 한글은 영문이나 숫자에 비해 방대한 문자수와 복잡한 구조로 인하여 인식에 많은 어려움을 가지고 있다. 따라서 본 논문에서는 한글을 가장 단순한 구조인 자음과 모음으로 분리한 뒤 각 개체의 픽셀 분포를 파악하고, 한글의 구조적 특징을 이용하여 자소의 행과 열에서의 peak값과 픽셀의 분포를 그룹으로 나누어 한글을 인식하는 방법을 제시한다.

  • PDF

나이브 베이즈 분류기와 혼동 행렬을 이용한 OCR에서의 철자 교정 (Using Naïve Bayes Classifier and Confusion Matrix Spelling Correction in OCR)

  • 노경목;김창현;천민아;김재훈
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2016년도 제28회 한글및한국어정보처리학술대회
    • /
    • pp.310-312
    • /
    • 2016
  • OCR(Optical Character Recognition)의 오류를 줄이기 위해 본 논문에서는 교정 어휘 쌍의 혼동 행렬(confusion matrix)과 나이브 베이즈 분류기($na{\ddot{i}}ve$ Bayes classifier)를 이용한 철자 교정 시스템을 제안한다. 본 시스템에서는 철자 오류 중 한글에 대한 철자 오류만을 교정하였다. 실험에 사용된 말뭉치는 한국어 원시 말뭉치와 OCR 출력 말뭉치, OCR 정답 말뭉치이다. 한국어 원시 말뭉치로부터 자소 단위의 언어모델(language model)과 교정 후보 검색을 위한 접두사 말뭉치를 구축했고, OCR 출력 말뭉치와 OCR 정답 말뭉치로부터 교정 어휘 쌍을 추출하고, 자소 단위로 분해하여 혼동 행렬을 만들고, 이를 이용하여 오류 모델(error model)을 구축했다. 접두사 말뭉치를 이용해서 교정 후보를 찾고 나이브 베이즈 분류기를 통해 확률이 높은 교정 후보 n개를 제시하였다. 후보 n개 내에 정답 어절이 있다면 교정을 성공하였다고 판단했고, 그 결과 약 97.73%의 인식률을 가지는 OCR에서, 3개의 교정 후보를 제시하였을 때, 약 0.28% 향상된 98.01%의 인식률을 보였다. 이는 한글에 대한 오류를 교정했을 때이며, 향후 특수 문자와 숫자 등을 복합적으로 처리하여 교정을 시도한다면 더 나은 결과를 보여줄 것이라 기대한다.

  • PDF

필기체 한글 인식에 유용한 세선화 알고리듬의 성능 개선에 관한 연구 (A Study on the Performance Improvement of Thinning Algorithm for Handwritten Korean Character)

  • 이기영;구하성;고형화
    • 한국통신학회논문지
    • /
    • 제19권5호
    • /
    • pp.883-891
    • /
    • 1994
  • 본 논문에서는 화소에서의 방향성을 이용하여 필기체 한글 인식에 유용한 세선화 알고리듬을 제안하였다. 세선화하기 전에 방향성 검출을 시행한다. 검출된 방향성에 의해서 직선과 사선으로 분류한다. 직선성분에는 Rutovitz crossing number를 이용한 알고리듬을 적용한다. 사선성분에는 Hilditch crossing number를 이용한 알고리듬을 적용한다. 제안한 알고리듬을 이미 제안된 다른 6가지의 세선화 알고리듬을 적용한 세선화 영상들과 성능을 비교하였다. 비교 항목으로는 기준 골격선과의 유사도, 잔가지 수, 그리고 자소 분리율 등이 사용되었다. 실험은 570개 문자에 대해서 수행하였다. 실험 결과 제안한 알고리듬은 유사도와 필기체 한글 인식에 많이 사용되는 자소 분리율에서 6개 비교 대상 중에서 가장 우수한 결과를 보였다.

  • PDF

나이브 베이즈 분류기와 혼동 행렬을 이용한 OCR에서의 철자 교정 (Using Naïve Bayes Classifier and Confusion Matrix Spelling Correction in OCR)

  • 노경목;김창현;천민아;김재훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.310-312
    • /
    • 2016
  • OCR(Optical Character Recognition)의 오류를 줄이기 위해 본 논문에서는 교정 어휘 쌍의 혼동 행렬(confusion matrix)과 나이브 베이즈 분류기($na{\ddot{i}}ve$ Bayes classifier)를 이용한 철자 교정 시스템을 제안한다. 본 시스템에서는 철자 오류 중 한글에 대한 철자 오류만을 교정하였다. 실험에 사용된 말뭉치는 한국어 원시 말뭉치와 OCR 출력 말뭉치, OCR 정답 말뭉치이다. 한국어 원시 말뭉치로부터 자소 단위의 언어 모델(language model)과 교정 후보 검색을 위한 접두사 말뭉치를 구축했고, OCR 출력 말뭉치와 OCR 정답 말뭉치로부터 교정 어휘 쌍을 추출하고, 자소 단위로 분해하여 혼동 행렬을 만들고, 이를 이용하여 오류 모델(error model)을 구축했다. 접두사 말뭉치를 이용해서 교정 후보를 찾고 나이브 베이즈 분류기를 통해 확률이 높은 교정 후보 n개를 제시하였다. 후보 n개 내에 정답 어절이 있다면 교정을 성공하였다고 판단했고, 그 결과 약 97.73%의 인식률을 가지는 OCR에서, 3개의 교정 후보를 제시하였을 때, 약 0.28% 향상된 98.01%의 인식률을 보였다. 이는 한글에 대한 오류를 교정했을 때이며, 향후 특수 문자와 숫자 등을 복합적으로 처리하여 교정을 시도한다면 더 나은 결과를 보여줄 것이라 기대한다.

  • PDF

은닉 마르코프 모델과 레벨 빌딩 알고리즘을 이용한 흘림체 한글의 온라인 인식 (On-line Recognition of Cursive Korean Characters Based on Hidden Markov Model and Level Building)

  • 김상균;김경현;이종국;이재욱;김항준
    • 한국정보처리학회논문지
    • /
    • 제3권5호
    • /
    • pp.1281-1293
    • /
    • 1996
  • 자소 단위의 HMM을 설계하고 製字 원리에 따라 연결한 한글 인식 네트워크에서 인식속도는 많은 경로수로 인해 상당히 느려진다. 본 논문에서는 탐색 속도를 개선 하기 위해 최적의 네트워크 탐색 방법인 레벨 빌딩 알고리즘을 수정, 적용한 온라인 한글 인식 모델을 제안한다. 한글 인식을 위한 레벨 빌딩은 초성·중성·종성 순의 정해진 필기 한글 구조를 반영한 syntax-directed 레벨 빌딩 탐색 알고리즘으로, 전체 11,172개의 경로를 가지는 방대한 크기의 인식 네트워크 탐색에 서 시간복잡 도가 경로수에 비의존적이고 노드 수 득, 개별 자소 HMM의 수에만 의존하는 효율적인 탐색 방법이다. 제한된 방법의 효용성을 입증하기 위한 인식 실험에서 KAIST의 온라인 한글 데이터, 15,000자를 대상으로 한 자당 0.72초의 인식속도를 보였다.

  • PDF