• 제목/요약/키워드: 자소 인식

검색결과 101건 처리시간 0.022초

연결성분 자소를 이용한 문자 인식 연구 (A Study on Character Recognition using Connected Components Grapheme)

  • 이경호
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2017년도 제55차 동계학술대회논문집 25권1호
    • /
    • pp.157-160
    • /
    • 2017
  • 본 연구에서는 한글 문자 인식을 수행하였다. 한글 인식을 수행하되 고딕 인쇄체 문자를 대상으로 하였고, 자소 단위 인식을 통한 인식을 수행하되 기존 한글 문자 인식 연구에서 사용하는 자음과 모음 단위의 자소가 아닌 연결성분을 이용하여 인식하는 새로운 자소를 이용하였다. 새로운 자소들은 끝점, 2선 모임점, 3선 모임점, 4선 모임점의 특징을 추출하고 특징에 의해 자소를 인식하는 데이터베이스를 구성하여 자소를 인식하게 하였다. 또한 연결 성분을 반영한 새로운 자소로 고딕 인쇄체 문자를 인식하므로 추출된 자소를 6가지로 분류하였고, 6가지 자소에 의해 구성되는 92가지 문자 구조를 제안하고 이에 따른 문자를 데이터베이스를 구축하였고, 자소의 무게 중심을 이용한 분포를 이용하여 제안된 구조를 통하여 데이터베이스를 이용한 문자인식을 수행하였다.

  • PDF

계층적 신경망을 이용한 자소인식에 기초한 Off-Line 필기체 한글인식 : 자소간 섭동체거를 위한 High-Level Constraint 회로의 설계

  • 장주석;김명원;임채덕;송윤선
    • 정보와 통신
    • /
    • 제9권11호
    • /
    • pp.34-36
    • /
    • 1992
  • 여러 개의 문자(혹은 여러 개의 자소로 구성된 한개의 문자)를 인식할때에는 문자(혹은 자소) 상호간에 영향을 미쳐서 오인식이 발생할 가능성이 높다. 개개의 숫자인식에 기초한 숫자열 인식이나, 개개의 자소인식을 바탕으로한 필기체 한글인식이 그 좋은 보기일 것이다. 예를 들어 단순한 한글 '그'를 Neocognitron으로 인식한다고 생각해 보자, 조합 가능한 글자를 모두 기억시키려면 방대한 규모의 회로가 필요하므로 현실적으로 불가능하다. 따라서 기본 자소(자음 14개, 모음 10개)를 인식하도록 학습시키고 이를 바탕으로 한글을 인식하는 것이 효율적이다. 이때, 회로의 각 세포가 보는 receptive field가 유한하여 '?'의 끝 세로부분 'I'가 '?'에 영향을 미쳐서 '?'로 인식된다 즉, 자소간의 섭동에 의해 '그'가 '고'로 인식되는 것이다. 이와같은 예는 '니'가 '넉'으로, '41'이 '4H'로 인식되는 등 매우 많지만 그 해결에 대한 연구는 거의 없다. 이 논문에서는 필기체 한글 자소를 인식하는 Necognitron외에 자소간의 섭동현상을 제거하기 위한 high-level constraint 회로를 Lotka-Volterra동역학에 기초하여 설계하였다. 이로써 off-line필기체 한글인식을 보다 효과적으로 할 수 있음을 컴퓨터 시뮬레이션으로 보인다.

  • PDF

자소 탐색 방법에 의한 온라인 한글 필기 인식 (Online korean character recognition using letter spotting method)

  • 조범준
    • 한국통신학회논문지
    • /
    • 제21권6호
    • /
    • pp.1379-1389
    • /
    • 1996
  • 한글 필기는 항상 초성, 중성, 종성의 순으로 씌어진다. 본 논문은 이점을 이용하여 자소 탐색 모델을 설계하고 그 탐색 결과에 의거하여 글자를 인식하려는 온라인 필기 인식 방법을 제시하고자 한다. 기본 자소 모델은 은닉 마르코프 모델을 이용하고 자소 탐색 모델은 HMM의 망으로 구성한다. 자소 탐색은 Viterbi 알고리즘에 의한 정합으로 이루어지며 글자 인식은 이들 자소 가설 격자의 탐색으로 이루어진다. 인식 실험 결과는 간단한 인식기 구조에도 불구하고 정자체의 경우 87.47%에 달하는 상당한 인식률을 보였으며, 특히 자연스럽게 쓴 필기에서도 매우 훌륭한 자소 분할 결과를 얻을 수 있었다.

  • PDF

규칙적인 잡음을 이용한 인쇄체 한글 자소인식 개선 (Improvement of The Printed Korean Grapheme Recognition using Meaningful Noises)

  • 이진수;권오준;방승양
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1995년도 제7회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.143-147
    • /
    • 1995
  • 한글은 문자수가 많고 초성, 중성, 종성의 조합으로 이루어진 2차원적인 특성 때문에, 신경망을 이용한 한글 인식의 경우에는 자소를 분리한 후 자소별로 인식하는 방법이 많이 사용된다. 이러한 방법의 경우 분리된 자소영역에 원하는 자소 이외의 부분이 첨가되면 학습이 어려워 오인식의 주된 원인이 되기 때문에, 정확한 자소분리 알고리즘이나 전처리등을 통하여 그러한 잡음을 없애려는 시도가 많이 있었으나 아직도 원하는 자소부분 만을 정확히 분리하는 것은 어려운 문제로 남아있다. 본 논문에서는 그러한 잡음이 규칙적임을 이용하여, 필요한 자소영역만을 추출하려하기보다는 오히려 필요한 자소영역 외의 부분을 포함시킴으로써, 잡음이라고만 생각했던 부분을 하나의 정보로 역이용하여 이로 인한 여러 오인식 경우를 해결하였다. 또한 자소의 위치가 불규칙적인 부분에 있어서는, 그 위치를 고정시키는 알고리즘을 사용하여 인식률을 더욱 높였다.

  • PDF

저해상도 인쇄체 한글 영상 인식을 위한 자소 분할 방법 (Grapheme Segmentation Method for Low Quality Printed Hangul Text Recognition)

  • 이성훈;조규태;김진식;김진형;정철곤;김상균;문영수;김지연
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (B)
    • /
    • pp.382-384
    • /
    • 2006
  • 본 논문에서는 저해상도 한글 영상을 자소 단위로 분리하는 방법을 제안한다. 비디오 자막이나 저해상도 스캔 영상의 경우 자소간 획이 접촉되거나 잡영이 많이 포함되어 기존의 자소 분할 방법으로는 한계가 있다. 한자 문자열을 문자 단위로 분할하는데 사용된 비선형 분할 경로 알고리즘을 한글 낱자 영상에 적용하여 자소 단위로 분할한다. 기존의 분할 경로 알고리즘을 한글 자소 분할에 효과적으로 적용하기 위해서 우세점 탐지 알고리즘을 이용하여 자소간 접촉점을 찾고 이를 바탕으로 생성된 분할 경로에 따라 여러 개의 자소 후보 영상이 생성된다. 자소 영상을 자소 인식기로 인식한 결과 높은 인식률을 보이는 것을 실험을 통하여 확인하였다.

  • PDF

자소 분리 방법을 이용한 차량번호판의 용도구분 문자 인식 (The Recognition of Vehicle Plate`s Korean Character Using Grapheme Segmentation)

  • 김성우;강동구;박재현;차의영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.646-648
    • /
    • 2002
  • 본 논문에서는 차량번호판의 용도구분 문자를 자소 단위로 분리하는 효율적인 방법을 제안하고, 신경망을 이용하여 자소를 인식하는 방법을 소개한다. 용도구분 문자(가, 거, 나, 너‥‥)는 실제 번호판의 훼손, 카메라의 성능, 기타 여러 가지 조건에 의해서 번호판 영상에 많은 잡영이 포함된다. 따라서 차량번호판 한글문자를 자소분리하는 것은 어려운 작업이다. 제안하는 이진 영상처리 기법(morphological operation, connected component labeling 등) 으로 분리된 자소가 인식시스템으로의 입력벡터로 입력되었을 때 높은 인식률을 보이는 것을 실험을 통하여 확인하였다

  • PDF

새로은 자소분리 기법을 이용한 필기체 한글인식 시스템 (Handprinted Korean Characters Recognition System bu Using New jaso Decompostion Method)

  • 박희주;김진호;오광식
    • 한국지능시스템학회논문지
    • /
    • 제5권3호
    • /
    • pp.101-110
    • /
    • 1995
  • 본 논문에서는 새로은 자소분리 기법을 이용한 필기체 한글인식 시스템을 제안하였다. 새로운 자소분리 기법에는 국소영역 투영기법과 국소영역 Blob Coloring 기법이 포함되어 있다. 한극 각 자소의 특징들을 이용하여 Backpropagaton 알고리듬으로 학습시켰고 인식과정에서 관심영역 탐색기법이 이용되었다. 4명의 필기자가 작성한 1600자의 한글을 학습시키고 학습되지 않은 밝기 영상의 문서에 대한 인식을 시도한 결과 95%의 인식률을 얻었다.

  • PDF

낱자 인식기와 자소 조합 인식기를 혼용한 인쇄체 한글 인식방법 (A Method of Machine-Printed Hangul Recognition using Character and Combined-Grapheme Recognizers)

  • 장승익;임길택;김호연;정선화;남윤석
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.244-246
    • /
    • 2003
  • 본 논문에서는 낱자 인식기와 자소 조합 인식기를 혼용한 저품질 인쇄체 한글의 고성능 인식 방법을 제안하였다. 제안한 방법에서는 입력 문자를 한글 6형식과 기타 형식의 문자, 총 7종으로 분류한, 입력문자를 인식 대상 문자의 수와 자소 복잡도에 따라 하나 또는 두 개의 인식 단위(HRU: Hangul recognition unit)로 분리하여 인식한다. 각 인식 단위 영상에서 추출한 방향각 특징을 다층신경망 인식기를 이용하여 인식한다. 다음으로, 각 다층신경망 인식기의 신뢰도를 조합하여 최종 인식 결과를 도출한다. 제안한 방법을 사용한 실험에서 98.80%의 인식률을 얻을 수 있었으며, 이는 기존 방법에 비해 23.61%의 오류가 감소한 것이다.

  • PDF

비디오에서 프로젝션을 이용한 문자 인식 (Identification of Korea Traditional Color Harmony)

  • 백정욱;신성윤;이양원
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 추계학술대회
    • /
    • pp.196-197
    • /
    • 2009
  • 비디오에서 우선 장면 전환 검출을 통해 생성된 키 프레임을 대상으로 프로젝션을 통하여 문자 인식을 수행하도록 한다. 텍스트의 자간 분리를 수직 프로젝션에 의해 분리 한다. 자소는 초성, 중성, 종성으로 분리하고 6가지 유형으로 분리한다. 자소 패턴 분리는 수평 프로젝션을 통하여 6가지 유형에 맞도록 분리한다. 자소는 수평, 수직, 사선, 역사선 방향으로 분리한다. 자소의 인식은 4-방향 프로젝션과 위치정보를 이용하여 인식하도록 한다.

  • PDF

낱자 특징 기반 자소 인식기를 이용한 인쇄체 한글 인식방법 (A Method of Machine-Printed Hangul Recognition using Grapheme Recognizer)

  • 장승익;남윤석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 춘계학술발표대회
    • /
    • pp.351-354
    • /
    • 2004
  • 본 논문에서는 낱자에서 추출한 특징을 입력으로 사용하는 자소 인식기를 이용한 저해상도 인쇄체 한글 영상의 인식 방법을 제안하였다. 제안한 방법에서는 입력 문자를 한글 6 형식과 기타 형식의 문자, 총 7 종으로 분류한 뒤, 입력 문자를 인식 대상 문자의 수와 자소 복잡도에 따라 하나 또는 두 개의 인식 단위로 구분하여 인식한다. 각 HRU는 낱자에서 추출한 방향각 특징을 입력으로 사용하는 다층 신경망 인식기를 이용하여 인식한다. 다음으로, 각 다층 신경망 인식기의 신뢰도를 조합하여 최종 인식 결과를 도출한다. 제안한 방법을 사용한 실험에서 98.99%의 인식률을 얻을 수 있었으며, 이는 기존 방법에 비해 15.83%의 오류가 감소한 것이다.

  • PDF