• Title/Summary/Keyword: 자세 오차

Search Result 361, Processing Time 0.027 seconds

Error Analysis of Reaction Wheel Speed Detection Methods (반작용휠 속도측정방법의 오차 분석)

  • Oh, Shi-Hwan;Lee, Hye-Jin;Lee, Seon-Ho;Yong, Ki-Lyuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.481-490
    • /
    • 2008
  • Reaction wheel is one of the actuators for spacecraft attitude control, which generates torque by changing an inertial rotor speed inside of the wheel. In order to generate required torque accurately and estimate an accurate angular momentum, wheel speed should be measured as close to the actual speed as possible. In this study, two conventional speed detection methods for high speed motor with digital tacho pulse (Elapsed-time method and Pulse-count method) and their resolutions are analyzed. For satellite attitude maneuvering and control, reaction wheel shall be operated in bi directional and low speed operation is sometimes needed for emergency case. Thus the bias error at low speed with constant acceleration (or deceleration) is also analysed. As a result, the speed detection error of elapsed-time method is largely influenced upon the high-speed clock frequency at high speed and largely effected on the number of tacho pulses used in elapsed time calculation at low speed, respectively.

The Study on the Development of a Ship's GPS-COMPASS Using GPS Position Information (GPS 위치정보를 이용한 선박용 GPS-Compass 개발에 관한 연구)

  • 고광섭;임정빈;심영호
    • Journal of the Korean Institute of Navigation
    • /
    • v.20 no.3
    • /
    • pp.73-84
    • /
    • 1996
  • 선진국에서의 GPS 위성정보를 활용한 자세결정 센서개발은 새로운 GPS 관련연구 분야로 떠오르고 있는 실정이다. 지금까지 국제학회에 보고된 대부분의 연구는 GPS 위성신호의 Carrier phase 측정을 통해 고중차등을 이용한 방법으로 주로 3-D 자세결정방식에 치중하고 있으나, 아직 실무에서의 활용은 이른 것으로 알려지고 있다. 본 논문은 GPS 위성신호의 범용이 C/A 코드 프로세싱 GPS 수신기 정보를 활용하여 선박의 방위센서 개발에 관한 연구이다. 본 연구에서는 1차적으로 GPS 위성신호의 오차벡터를 진시간으로 측정 및 분석을 통해 GPS 위성오차중 가장 심각한 S/A 오차 발생기간에도 방위센서 구측을 위한 정보획득에는 문제가 되지 않음을 확인하였고, 수신된 Two-Point 위성정보를 이용 새로운 선박의 방위센서 "GPS-Compass"를 구측 비선형 모델하에서의 해상 실험을 통해 본 연구에서 제시한 "GPS-Compass"의 새로운 선박 방위센서로의 활용가능성을 보였다.박 방위센서로의 활용가능성을 보였다.

  • PDF

Propellant Consumption Estimation of Reaction Control System During Flight of KSLV-II (한국형발사체 추력기 자세제어시스템 비행 중 추진제 소모량 추정식)

  • Kang, Shin-jae;Oh, Sang-gwan;Yoon, Won-jae;Min, Byeong-joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.7
    • /
    • pp.529-536
    • /
    • 2020
  • Reaction Control System of the third stage of the Korean Space Launch Vehicle II conducts roll control and 3 axis control throughout third stage engine start, satellite separation, and collision and contamination avoidance maneuver. Reaction control system consumes its propellant in each thruster operation. Hence, loading of proper amount of the propellant is important for mission success. It is needed to have a rough estimation method of propellant consumption during the flight. In this paper, we developed a energy equation using pressure and temperature data which are acquired in the on-board reaction control system. We constructed a test system which is similar with the on-board reaction control system to verify the energy equation. Test results using deionized water were compared with estimated propellant consumption. We also conducted an error analysis of the energy equation. We also presented the propellant consumption result of a system level operation test.

Reproducibility and reliability of head posture obtained by the outer canthus indicator (Outer Canthus Indicator를 이용한 두부 자세 기록법의 재현성)

  • Kim, Young-Jae;Sohn, Byong-Wha;Lee, Kee-Joon
    • The korean journal of orthodontics
    • /
    • v.40 no.2
    • /
    • pp.77-86
    • /
    • 2010
  • Objective: The purposes of this study were to evaluate the reproducibility and reliability of head posture obtained by registering outer canthus as a soft tissue landmark with the Outer Canthus Indicator (OCI). Methods: Twenty-one adults with normal facial morphology were enrolled in this study (mean age $27.5\;{\pm}\;1.72$ years). To register initial head posture, height of the outer canthus from the ear rod plane was measured using OCI. Head posture was reproduced by moving the head upwards and downwards until the outer canthus was in a straight line with the indicator set at a registered height. After the head posture is reproduced by two operators after two days, lateral photographs were taken. Computerized photometric analyses of the photographs were performed. Results: The head rotations around the transverse axis were $0.69\;{\pm}\;0.43^{\circ}$, $0.98\;{\pm}\;0.65^{\circ}$ from each of the two operators. Standard errors were $0.09^{\circ}$ and $0.14^{\circ}$ each, which were similar to results from past research findings. There were no significant differences between the data from the two operators (p > 0.05). There were no correlations between the head rotation around the horizontal and vertical axes (p > 0.05). Conclusions: The present study suggests that OCI-registered head posture may minimize errors from vertical head rotation in cephalometry and photometry.

Satellite Attitude Control on Reaction Wheel Low-Speed Region (반작용휠 저속구간에서의 위성자세제어)

  • Son, Jun-Won;Park, Young-Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.11
    • /
    • pp.967-974
    • /
    • 2017
  • Reaction wheel shows nonlinear torque response on low-speed region due to friction. Thus precise satellite attitude control on this region is hard to achieve. Previous research tries to solve this problem, by compensating friction or applying dither command. However, due to difficulties of drag torque modeling or frequent zero wheel speed crossing, these methods are not suitable to apply on the real satellite attitude control. To solve this problem, we propose the attitude controller gain adjustment method based on the attitude error.

A Study on Improvement of Roll Autopilot System (가로축 자동비행시스템 개선에 관한 연구)

  • Kim, Chong-Sup;Koh, Gi-Oak;Ji, Chang-Ho;Cho, In-Je;Lee, Dong-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.706-711
    • /
    • 2015
  • The fighter aircraft uses several different loading configurations for air-to-surface and air-to-air combat missions. To maintain wings-level flight with an asymmetric weapon configuration, a pilot controls a roll trim system. However, it is difficult to apply an accurate roll trim input for wings-level flight in the actual flight under disturbance. The inaccurate roll trim input degrades the performance of the roll autopilot system. In this paper, to solve this problem, an integrator was additionally designed in the command part of the roll autopilot system. The initial transient response was improved by scheduling the limiter to restrict the roll attitude error. As a result of the evaluation of the simulation for the designed flight control law, the roll attitude following performance was found to be improved in the autopilot system operation under the inaccurate roll trim condition.

AOCS On-orbit Calibration for High Agility Imaging LEO Satellite (고기동 영상촬영 저궤도 위성 자세제어계 궤도상 보정)

  • Yoon, Hyungjoo;Park, Keun Joo;Yim, Jo Ryeong;Choi, Hong-Taek;Seo, Doo Chun
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.80-86
    • /
    • 2012
  • A fast maneuvering LEO satellite producing high resolution images was developed by Korea Aerospace Research Institute and launched successfully. To achieve accurate pointing and stringent pointing stability, the attitude orbit control subsystem implements high performance star trackers and gyroscopes. In addition, series of on-orbit calibration need to be performed to compensate mainly misalignment errors due to launch shock and on-orbit thermal environment. In this paper, the on-orbit calibration approach is described with the performance enhancement result through flight data analysis.

Improvement of Attitude Determination Based on Specific Force Vector Matching (비력벡터매칭 기법을 이용한 자세결정 알고리즘의 성능 향상)

  • Choe, Yeongkwon;Park, Chan Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.2
    • /
    • pp.106-113
    • /
    • 2017
  • Attitude determination algorithms for aircraft and land vehicles use earth gravitational vector and geomagnetic vector; hence, magnetometers and accelerometers are employed. In dynamic situation, the output from accelerometers includes not only gravitational vector but also motional acceleration, thus it is hard to determine accurate attitude. The acceleration compensation method treated in this paper solves the problem to compensate the specific force vector for motional acceleration calculated by a GPS receiver. This paper analyzed the error from the corrected vector regarded as a constant by conventional acceleration compensation method, and improve the error by rederivation from measurements. The analyzed error factors and improvements by the proposed algorithm are verified by computer simulations.

Determinate Real-Time Position and Attitude using GPS/INS/AT for Real-time Aerial Monitoring System (실시간 공중 자료획득 시스템을 위한 GPS/INS/AT를 이용한 실시간 위치/자세 결정)

  • Han, Joong-Hee;Kwon, Jay-Hyoun;Lee, Im-Pyeong;Choi, Kyoung-Ah
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.5
    • /
    • pp.531-537
    • /
    • 2010
  • Real-time Aerial Monitoring System performs the rapid mapping in an emergency situation so that the geoinformation could be constructed in near real time. In this system, the position and attitude information from GPS/INS integration algorithm is used to perform the aerial triangulation(AT) without GCPs. Therefore, if we obtain Exterior Orientation(EO) estimates from AT sequentially, EO are used as the measurements in the Kalman filter. In this study, we simulate the GPS/IMS/Image data for an UAV-based aerial monitoring system and compare the GPS/INS/AT with and without from AT. Comparative analysis showed that result from the GPS/INS/AT with EO update is more accurate than without the update. However, when the vehicle turns, the position error significantly increases which need more analysis in the future.

Error Assessment of Attitude Determination Using Wireless Internet-Based DGPS (무선인터넷기반의 DGPS를 이용한 동체의 자세결정 성능평가)

  • Lee Hong Shik;Lim Sam Sung;Park Jun Ku
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.2
    • /
    • pp.101-108
    • /
    • 2005
  • Inertial Navigation System has been used extensively to determine the position, velocity and attitude of the body. An INS is very expensive, however, heavy, power intensive, requires long setting times and the accuracy of the system is degraded as time passed due to the accumulated error. Global Positioning System(GPS) receivers can compensate for the Inertial Navigation System with the ability to provide both absolute position and attitude. This study describes a method to improve both the accuracy of a body positioning and the precision of an attitude determination using GPS antenna array. Existing attitude determination methods using low-cost GPS receivers focused on the relative vectors between the master and the slave antennas. Then the positioning of the master antenna is determined in meter-level because the single point positioning with pseudorange measurements is used. To obtain a better positioning accuracy of the body in this research, a wireless internet is used as an alternative data link for the real-time differential corrections and dual-frequency GPS receivers which is expected to be inexpensive was used. The numerical results show that this system has the centimeter level accuracy in positioning and the degree level accuracy in attitude.