• Title/Summary/Keyword: 자세 기동

Search Result 79, Processing Time 0.02 seconds

A Study on High Agile Satellite Maneuver through Sequential Activation of Control Moment Gyros and Reaction Wheels (제어모멘트자이로와 반작용휠의 순차적 사용을 통한 위성 고기동 연구)

  • Son, Jun-Won;Choi, Hong-Taek
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.18-28
    • /
    • 2014
  • We assume that two control moment gyros are installed for space qualification in a satellite with four reaction wheels, and study the high agile maneuver method. Using high torque control moment gyros, we reduce the satellite's attitude error. After that, we activate reaction wheels to control remaining attitude error. This proposed method can avoid singularity problem of control moment gyros, and do not require gimbals' angle to calculate torque command. Through numerical simulations, we show that our method's agile performance is similar to previous method and reduce the reaction wheels' required momentum.

Analysis of Spacecraft Attitude Dynamics Interacting with Liquid Fuel Sloshing (액체 연료의 슬라슁과 상호작용하는 우주 탐사선의 자세 운동 분석)

  • Jin, Jaehyun;Kim, Su-Kyum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.12
    • /
    • pp.1059-1068
    • /
    • 2017
  • Space exploration spacecraft carry large amounts of liquid fuel, often more than half. In such cases, the liquid fuel sloshing must be considered in the design of the spacecraft since the sloshing can affects the stability of the spacecraft. In this paper, we present the results of analyzing the sloshing of fuel and the dynamic behavior of the spacecraft. For the purpose, a model in which the maneuvering of the spacecraft causes the sloshing and a model in which the reaction force and moment due to the sloshing are transmitted to the spacecraft are developed. The dynamical behavior of the spacecraft are analyzed using a simulation program coded by Modelica.

Hardware in Loop Simulation on Autopilot Controller with MEMS AHRS for High Speed Unmanned Underwater Vehicle (MEMS형 자세측정장치를 이용한 고속 기동 무인 잠수정 자율 조종 제어기에 대한 HILS)

  • Hwang, Arom;Yoon, Seon-Il;Song, Jee-Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.81-86
    • /
    • 2012
  • Unmanned underwater vehicles have many applications in scientific, military, and commercial areas because of their autonomy. In many cases, an underwater vehicle adopts a control algorithm based on a tactical inertial sensor for precise control. However, a control algorithm that uses a tactical inertial sensor is unsuitable for some underwater vehicle missions such as torpedo decoys. This paper proposes a control algorithm for an unmanned underwater vehicle that does not require precise control. The control algorithm proposed for an unmanned underwater vehicle adopts a low cost MEMS inertial sensor, and simulations using the specifications of the MEMS inertial sensor under development are performed to verify the control algorithm under a real environment. The results of these simulations are presented.

Results Analysis for On-orbit Operation of KOMPSAT-1 Propulsion System (다목적실용위성 1호 추진시스템 궤도운용 결과 분석)

  • 김정수;한조영;진익민
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.107-113
    • /
    • 2000
  • Design configuration and performance requirements for KOMPSAT-1 propulsion system were described. Operational results of the propulsion system obtained through the satellite Launch and Early Operation Phase were scrutinized. Performance characteristics of the thrusters which are employed for spacecraft attitude control and the corresponding propellant depletion rate were analysed according to satellite operation modes. Additionally, propellant leakproof and thermal control capability were checked out from the view point of system verification. Propellant depletion rates calculated by PVT method in $\Delta$V maneuvering and each attitude control mode produce the very meaningful results for the prediction of total propellant consumption up to the end of satellite mission life.

  • PDF

Improvement of Transfer Alignment Performance for Airborne EOTS (항공용 전자광학추적장비의 전달정렬 성능 개선)

  • Kim, Minsoo;Lee, Dogeun;Jeong, Chiun;Jeong, Jihee
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.60-67
    • /
    • 2022
  • An Electro-Optical Tracking System (EOTS) is an electric optical system with EO/IR cameras, laser sensors, and an IMU. The EOTS calculates coordinates of targets, using attitude and acceleration measured by the IMU. In particular for an armed aircraft, the performance of the weapon system depends on how quickly and accurately it acquires the target coordinates. The IMU should be operated after alignment is complete, to meet the coordinate accuracy required by the weapon system so the initial stabilization time of the IMU should be reduced, by quickly measuring the attitude and acceleration. Alignment is the process of determining the initial attitude by resolving the attitude error of the IMU, and the IMU of mission equipment such as an airborne EOTS, uses velocity matching based on the velocity from GPS/INS for aircraft navigation. In this paper, a method is presented to improve the transfer alignment performance of the airborne EOTS, by maneuvering aircraft and the mission equipment. First, the performance factor of the alignment was identified, as a heading error through the velocity matching model and simulation results. Then acceleration maneuvers and attitude changes were necessary, to correct the error. As a result of flight tests applied to an EOTS on a OOO aircraft system, the transfer alignment performance was improved as the duration time was decreased, by more than five times when the aircraft accelerated by more than 0.2g and the EOTS was moving until 6.7deg/s.

Error Analysis of Reaction Wheel Speed Detection Methods (반작용휠 속도측정방법의 오차 분석)

  • Oh, Shi-Hwan;Lee, Hye-Jin;Lee, Seon-Ho;Yong, Ki-Lyuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.481-490
    • /
    • 2008
  • Reaction wheel is one of the actuators for spacecraft attitude control, which generates torque by changing an inertial rotor speed inside of the wheel. In order to generate required torque accurately and estimate an accurate angular momentum, wheel speed should be measured as close to the actual speed as possible. In this study, two conventional speed detection methods for high speed motor with digital tacho pulse (Elapsed-time method and Pulse-count method) and their resolutions are analyzed. For satellite attitude maneuvering and control, reaction wheel shall be operated in bi directional and low speed operation is sometimes needed for emergency case. Thus the bias error at low speed with constant acceleration (or deceleration) is also analysed. As a result, the speed detection error of elapsed-time method is largely influenced upon the high-speed clock frequency at high speed and largely effected on the number of tacho pulses used in elapsed time calculation at low speed, respectively.

정지궤도 인공위성 추력기 모델링

  • Park, Eung-Sik;Park, Bong-Kyu
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.96-104
    • /
    • 2003
  • Geostationary satellite propulsion system provides satellite with the velocity increment for attitude control operations and sationkeeping operations from satellite launch to de-orbit at the end of life. Today, various types of propulsion system and its thrusters are produced by worldwide manufactures. Therefore, geostationary satellite manufacturers give significant modification to the Mission Analysis Software whenever different type of propulsion system type is adopted. Mission Analysis Software is a tool for planning and verification of satellite mission. For the development of the Generalized Mission Analysis Software, many thrusters are carefully investigated and modeled.

  • PDF

위성 추진시스템의 열적 거동 비교 연구

  • 한조영;김정수;이균호;김병교
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.66-66
    • /
    • 2003
  • 우주 공간이라는 극한 상황에서 운용되는 인공위성을 개발하기 위해서는 실제 제작 공간인 지상에서 가능한 모든 우주 공간에서의 위험을 예측하여 원하지 않는 재난을 방지할 수 있는 설계를 수행함이 요망된다. 위성의 기동 및 자세 제어에 사용되는 하이 드라진 추진시스템의 경우 예상되는 가장 큰 재난은 추진제의 동결로 인한 추진시스템의 작동 불능이다. 본 연구에서는 추진시스템의 안정적 작동을 위해 요구되는 추진제의 동결 방지를 위해 사용되는 히터 사양을 결정하며 이를 위해 위성 추진시스템의 열ㆍ수학적 모델을 개발한다. 개발된 열ㆍ수학적 모델의 타당성을 검증하기 위해 수치적으로 계산된 결과를 열진공 시험의 결과와 비교 연구한다 이론적 해석 모델과 열진공 시험조건 사이의 다소의 불일치성에도 불구하고 두 결과는 정성적으로 잘 부합된다. 따라서 본 연구를 통해 위성 추진시스템의 히터가 적절히 설계되었으며 개발된 열ㆍ수학적 모델은 인공위성 추진시스템의 주요한 설계 수단으로 사용될 수 있음을 검증한다.

  • PDF

지구 저궤도 고해상도 관측위성의 개발 동향

  • Kim, Gyu-Seon;Jeong, Dae-Won
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.4 no.1
    • /
    • pp.68-73
    • /
    • 2006
  • 1990년대 중반이후 선진외국의 위성 제작사들은 상업적인 목적으로 소형 위성체에 고해상도 광학 탑재체를 탑재한 위성을 개발하기 시작하였다. 특히 미국의 Lockheed Martin사에서 IKONOS라는 상업용 고해상도 지구관측 위성을 개발한 이후 미국 및 유럽의 선진외국 사에서 유사한 위성을 개발하여 미국 내 정부의 수요 및 해외고객의 수요를 충족시켰다. 최근 다음 세대 위성의 개발이 진행되어 1-2년 내에 발사를 앞두고 있는데 미국 내의 개발 동향은 위성의 대형화를 통한 성능 및 수명 증대와 더불어 고용량 자세제어 작동기를 사용한 고 기동성능 확보로 요약할 수 있으며, 탑재체 성능의 경우에는 PAN 채널의 경우 0.5 m 이하의 해상도를 갖는 성능 증대를 보이고 있다. 본 기술동향에서는 기존의 개발 되어있는 고해상도 지구관측위성의 특성을 살펴보고 향후 지구 저궤도 고해상도 관측위성의 개발동향에 대하여 분석하였다.

  • PDF

Implementation and Verification of Lateral Navigation Algorithm for Korean Utility Helicopter (기동헬기 측면항법 알고리즘 구현 및 검증)

  • Kim, Sung-woo;Go, Eun-kyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.354-361
    • /
    • 2018
  • This paper describe the Lateral Navigation algorithm design and verification that implementation on Mission Computer's OFP for Korean Utility Helicopter(KUH) instead of Auto Flight Control System(AFCS) Vehicle Management System. The LNAV function transmits Roll command into the AFCS System. The Roll command value will be calculated by control algorithms in MC. The Operational Flight Program(OFP) shall use for its calculations different measurements of the aircraft's attitude and place. Using these inputs, the OFP will translate a navigational demand(for example-to perform the selected flight plan) into Roll commands to the autopilot. By conducting integration test using SIL and ground test, flight test, it is confirmed that the introduced algorithm meets the requirements of the Mission Equipment Package(MEP) system. LNAV function is verified through the System Integration Laboratory(SIL) test, ground and flight test.