• Title/Summary/Keyword: 자세각속도

Search Result 66, Processing Time 0.024 seconds

Analysis of Optimal Landing Trajectory in Attitude Angular Velocity Influence at Powered Descent Phase of Robotic Lunar Lander (무인 달착륙선의 동력하강단계에서 자세각속도 영향에 따른 최적화 착륙궤적 분석)

  • Park, Jae-ik;Rew, Dong-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.5
    • /
    • pp.402-409
    • /
    • 2018
  • In this paper, we propose a lunar landing scenario of a robotic lunar landing mission and implements an optimal landing trajectory at the powered descent phase based on the proposed scenario. The change of attitude of the lunar lander in the power descent phase affects not only the amount of fuel used but also sensor operation of image based navigation. Therefore, the attitude angular velocity is included in the cost function of the optimal control problem to minimize the unnecessary attitude change when the optimal landing trajectory generates at powered descent phase of the lunar landing. The influence of the change of attitude angular velocity on the optimal landing trajectory are analyzed by adjusting the weight of the attitude angular velocity. Based on the results, we suggest the proper weight to generate the optimal landing trajectory in order to minimize the influence of the attitude angular velocity.

Verification of Missile Angular Velocity Calculation Using FMS (FMS를 이용한 대전차 유도탄의 각속도 계산식 검증)

  • Park, Eo-Jin;Kim, Wan-Shik;Park, Chan-Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.992-997
    • /
    • 2009
  • This paper focuses on the calculation of the missile angular velocity under the reduced sensor condition and its verification using the Flight Motion Simulator(FMS). The missile angular velocity is usually measured by the body gyroscopes, but we assume that the inertial sensors on the missile body are in the absence of pitch and yaw gyroscopes. Under this reduced sensor condition, this paper shows the missile angular velocity can be calculated by using the gimbal seeker gyroscope, the roll body gyroscope, the gimbal angle and its rate. The FMS experiment was carried out to verify the proposed algorithm.

Attitude Determination for Gyroless Spacecraft Using Reaction Wheels (반작용휠을 이용한 자이로 미탑재 위성의 자세결정 기법)

  • Park, Seong-Yong;Kim, Young-Ouk;Leeghim, Henzeh
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.10
    • /
    • pp.853-861
    • /
    • 2016
  • This paper deals with a new technique utilizing the angular speed of the reaction wheels to determine attitudes and angular rates for gyroless satellites. The suggested algorithm in this study is designed to determine the precise attitude and angular rates under actual space environments by the support of the angular speeds of reaction wheels based on the extended Kalman filter. Furthermore, the proposed approach is also designed to estimate not only the attitude and angular rates of spacecraft but the external disturbances. The numerical simulation was conducted for gyloless spacecraft installed with four reaction wheels of the pyramid-type configuration. The performance of the proposed algorithm is verified by using numerical simulations.

Fault Tolerant Attitude Control of a Spacecraft Using Two Wheels (두 개의 휠을 이용한 인공위성의 내고장 자세제어)

  • Jin, Jae-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.42-47
    • /
    • 2010
  • This paper considers a fault tolerant control problem for a spacecraft using wheels which are momentum exchanging devices. The control of a satellite with only two healthy wheels has been studied and its result has been presented. Two different configurations have been considered. When the yaw rate cannot be controlled directly by any control input, the desired yaw rate can be obtained by using the roll rate as a pseudo control. As a result, all three angular speeds have been stabilized, and two attitude angles including pitch and yaw have been controlled to converge to the desired values.

저궤도위성 열진공 시스템 환경시험 후 자이로센서 결과 분석

  • Kim, Yeong-Yun;Jo, Seung-Won;Heo, Yun-Gu;Chae, Dong-Cheol;Choe, Jong-Yeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.172.2-172.2
    • /
    • 2012
  • 위성은 발사 후 임무수행을 위하여 자세획득 및 자세결정이 필수적이다. 저궤도 위성에서 자이로센서는 별 센서와 함께 사용되거나, 별 추적기와 사용하여 자세의 변화량을 읽고 자세제어를 수행한다. 자이로센서는 크게 전력공급부와 각속도 측정부, 그리고 전자처리부 등으로 구성된다. 위성은 발사 전 조립시험 기간 동안 전자파, 진동, 열/진공 등의 환경시험 통하여 수차례의 성능 유무를 확인한다. 본고에서는 열진공시험 전과 후, 그리고 열진공시험 진행중에 측정한 결과를 통하여, 시스템적인 측면에서의 자이로센서 건강상태 및 성능을 분석하였다. 위성시스템 상태의 자이로 시험은 자이로센서가 가질 수 있는 조합에 따라 위성의 방향에 따른 지구각속도를 확인 및 관련 데이터를 분석하였다.

  • PDF

Stability Analysis of Missiles with Strapdown Seeker (스트랩다운 탐색기를 탑재한 유도탄의 안정성 해석)

  • Kim, Tae-Hun;Park, Bong-Gyun;Kwon, Hyuck-Hoon;Kim, Yoon-Hwan;Tahk, Min-Jea
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.332-340
    • /
    • 2011
  • A missile with a strapdown seeker should properly estimate line-of-sight(LOS) rate using its attitude information and the look angle of the seeker because LOS rate information in an inertial coordinate system, which is used for a proportional navigation(PN) homing guidance, can not be obtained directly. However, an unnecessary feedback loop(Parasite Loop) is formed in the guidance and control loop, and it may cause the guidance performance degradation or even the unstability of the system(Parasite Effect). This paper presents estimation methods for the LOS rate information and effective ways to minimize the parasite effect using Routh-Hurwitz stability criterion. Various numerical simulations are also included to verify the proposed methods.

Fault Tolerant Attitude Control for a Spacecraft Using Reaction Wheels (반작용 휠을 사용하는 인공위성의 내고장 자세제어기법)

  • Jin, Jae-Hyun;Lee, Hun-Gu;Tahk, Min-Jea
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.526-532
    • /
    • 2007
  • This paper considers a fault tolerant control problem for a spacecraft using reaction wheels. Faults are assumed to be inherent to only actuators(reaction wheels) and a control algorithm to accommodate actuators' faults is proposed. An attitude control loop includes an angular velocity control loop. The time delay control method is used to make a spacecraft follow the command angular velocity and to accommodate actuators' faults. A stability condition for the proposed algorithm is derived and the performance is demonstrated by computer simulations.

Sliding Mode Attitude Control of Spacecraft Considering Angular Rate Constraints (각속도 제한을 고려한 인공위성의 슬라이딩 모드 자세제어)

  • Kim, Min-young;Jang, Seok-ho;Leeghim, Henzeh
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.2
    • /
    • pp.129-138
    • /
    • 2021
  • Due to the active progress in space programs for various types of ground and space missions, the high agile spacecraft maneuverability is also required. To meet the requirement of the given space missions, the Control Moment Gyros (CMG) for the alternatives of the classical reaction wheels can release the attitude maneuverability restrictions. In addition, the angular rates of the spacecraft is constrained due to the limited actuator characteristics. In this paper, a sliding mode control technique for the attitude control of the spacecraft equipped with the pyramid type of CSCMG(Constant Speed CMG) is designed, and the stability of the control system is guaranteed by using the Lyapunov stability theory. Finally, the control law proposed is analyized by numertical simulations.

Interferometric Measurement of Flexure Error in a Ring Laser Gyroscope (간섭계를 이용한 링레이저 자이로스코프의 플렉셔 오차 측정)

  • 김정주;이동찬;이재철;조민식;권용율
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.272-273
    • /
    • 2003
  • 링레이저 자이로스코프(Ring Laser Gyroscope-이하 RLG)는 비행기, 유도무기, 선박, 지상무기 등의 관성항법장치(Inertial Navigation System)에 사용되는 각속도 센서로서 항체의 위치와 자세 정보를 제공하는 핵심 구성품 중의 하나이다. 각속도 검출 원리는 삼각형 또는 사각형의 공진기에 He과 Ne을 혼합한 이득매질을 사용하여 서로 반대방향으로 회전하는 두 개의 레이저 빔을 발생시켜서 Sagnac 효과에 의해 외부의 회전 입력을 받을 때 서로 다른 광 경로의 차이로 인한 두 빔의 간섭으로 회전각을 검출한다. (중략)

  • PDF

Preliminary Analysis on Characteristics of Attitude Control based on Operation Scenario of Small SAR Satellite Mission, S-STEP (초소형 SAR 위성 S-STEP의 임무 시나리오에 따른 자세 제어 성능 예비 분석)

  • Lee, Eunji;Park, Jinhan;Song, Sung-Chan;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.49-56
    • /
    • 2022
  • S-STEP is a small SAR satellite mission that monitors time-limited emergency targets and military anomalies in areas of interest, achieving the average revisit in less than 30 minutes by deploying a constellation of 32 satellites in low orbit at an altitude of 510 km. The mission operation mode of S-STEP is divided into normal mode, observation mode, communication mode, and orbit maintenance mode. Further,, the attitude control mode is subdivides into initial detumbling, sun pointing, target pointing, ground station pointing, and thrust direction maintenance. Based on the preliminary mission operational scenario and the satellite's characteristics, this study analyzed the attitude control performance during initial detumbling and observation modes. It verifies that each mode's attitude control accuracy requirements within the time allotted by the scenario of the S-STEP achieved.