• Title/Summary/Keyword: 자료결측

Search Result 305, Processing Time 0.026 seconds

Filling Analysis for Missing Turbidity Data in Han River Estuary (한강 하구부에서 결측된 탁도 자료의 보완)

  • Baek, Kyong-Oh;Cho, Hong-Yeon;Lee, Sam-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.4 s.165
    • /
    • pp.289-298
    • /
    • 2006
  • Turbidity had been measured during five months In Han River estuary at three sites. In this process, missing data occurred due to gauge imitation of the turbidity sensor. A filling method for the missing turbidity data was newly developed in this study. Under the assumption of the time series data with unique period and different amplitudes, the new method can fill the missing data based on the area ratio of each cycle. And the new method was verified through the data set having no missing data. There were little differences between gross area of the original data and that of the revised data by the new method though values of peak were underestimated. As a result, missing turbidity data observed at Han River estuary could be appropriately filled using the new filling method.

Assessment of Missing Data Estimation with Rain Radar (강우레이더를 활용한 강수량 결측 보정에 관한 연구)

  • Kim, Tae Hyung;Lee, Jong-Hyeon;Lee, Yeong-Gon;Jang, Seung-Yeong;Choe, Gyu-Hyeon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.310-310
    • /
    • 2018
  • Generally, precipitation measurement were conducted with various authrities. Among these, the MOLIT conduct the hydrological survey for the water resource management such as flood and low-flow forecasting, drought countermeasure, streamflow management. There is totally 424 observatory were existed and each precipitation measurement were obtained and quality assuranced with 10-min interval. It could be arranged or estimated with nearby observatory and radar reflectivity when the total amount of precipitation are existed. The objective of the study is therefore to suggest the method to estimate missing data with rain radar reflectivity. To validate suggested method, 50 observartory were obtained, and the efficiency were analyzed with estimated and observed precipitation. As the result of the study, the suggested method has reliability, and can be used as a method for quality assurance.

  • PDF

Evaluation of Gapfilling Method of Missing Soil Moisture Values during Rainfall Period - Gapfilling Method Based on Culmulative Distribution Function (강우기간의 토양수분량 결측값 보간방법 평가 - 누적분포함수를 이용한 결측 보간)

  • Yong Jun Lee;Ki young Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.299-299
    • /
    • 2023
  • 토양수분(soil moisture)은 수문인자의 하나로서 토양 내에 함유된 물의 양을 의미하며, 그 총량은 미미하지만 대기와 지표면 사이에서 일어나는 복잡한 물순환과 에너지 교환을 이해하는데 있어 필수적이다. 현재 국내에서는 「수자원의 조사·계획 및 관리에 관한 법률」(이하 수자원법)에 근거해 토양수분량 관측이 이루어지고 있으며, 수자원 분야의 한국수자원조사기술원 외에도 농업, 임업 분야에서도 다양한 기관에서 지상관측소를 구축해 토양수분량을 측정하고 있다. 국내 지상관측소에서는 주로 지점규모(point scale)로 토양수분량을 관측하는 장비가 사용되고 있으며, 유전율식 장비인 TDR(Time Domain Reflectometry), FDR(Frequency Domain Reflectometry)이나 토양수분장력을 측정하는 장력계(Tensiometer)가 널리 쓰이고 있다. 수자원분야에서는 토양 내 수분의 양을 직관적으로 확인할 수 있는 유전율식 장비가 대중적으로 사용되고 있으며, 최근에는 우주선(Cosmic-Ray)으로부터 발생하는 고속중성자(Fast Neutron)를 통해 중규모 면단위(field scale) 토양수분량을 관측하는 장비인 CRNP(Cosmic-Ray Neutron Probe)에 대한 연구도 활발히 진행되고 있다. 이러한 장비는 주로 야외에 설치해 운영하고 있기 때문에 장비 훼손이나 전원공급의 어려움으로 결측이나 오측이 발생할 수 있다. 토양수분량 시계열자료의 결측이나 오측이 일반적인 감쇄기에 발생했다면 선형보간법으로도 간단히 보간할 수 있지만, 강우에 의한 상승기에 발생했다면 해당 강우사상에서의 토양수분량의 상한치를 알기 어려워 결측보간에 어려움이 있다. 본 연구에서는 토양수분량 시계열자료의 강우기간 결측을 보간하는 방법으로 누적분포함수 역변환 샘플링방법을 선택하였다. 연구에는 음성군(차곡리) 토양수분량 관측소 2021년 자료가 사용되었으며, 관측소 56개 지점 중 임의의 지점에 결측구간을 생성한 뒤 해당 지점과의 상관계수가 높은 지점의 누적분포함수를 이용해 역변환 샘플링 방식으로 임의 지점의 결측을 보간하고 그 결과를 기존값과 비교해 보간 방법의 정확도를 평가하였다.

  • PDF

A New Method for Imputation of Missing Genotype using Linkage Disequilibrium and Haplotype Information (결측치가 존재하는 유전형 자료에서의 연관불균형과 일배체형을 사용한 결측치 대치 방법)

  • Park Yun-Ju;Kim Young-Jin;Park Jung-Sun;Kim Kuchan;Koh Insong;Jung Ho-Youl
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.2
    • /
    • pp.99-107
    • /
    • 2005
  • In this paper, wc propose a now missing imputation method for minimizing loss of information linkage disequilibrium-based and haplotype-based imputation method, which estimate missing values of the data based on the specificity of Single Nucleotide Polymorphism(SNP) genotype data. Method for imputing data is needed to minimize the loss of information caused by experimental missing data. In general, missing imputation of biological data has used major allele imputation method. but this approach is not optima]. 1'his method has high error rates of missing values estimation since the characteristics of the genotype data are not considered not take into consideration the specific structure of the data. In this paper, we show the results of the comparative evaluation of our model methods and major imputation method for the estimation of missing values.

Restoration, Prediction and Noise Analysis of Geomagnetic Time-series Data (시계열 지자기 측정 자료의 복원, 예측 및 잡음 분석 연구)

  • Ji, Yoon-Soo;Oh, Seok-Hoon;Suh, Baek-Soo;Lee, Duk-Kee
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.613-628
    • /
    • 2011
  • Restoration, prediction and noise analysis of geomagnetic data measured in the Korean Peninsula were performed. Restoration methods based on an optimized principal component analysis (PCA) and the geostatistical kriging approach were proposed, and its effectiveness was also interpreted. The PCA-based method seemed to be effective to restore the periodical signals and the geostatistical approach was stable to fill the gaps of measurements. To analyze the noise level for each observatory, the geomagnetic time-series was plotted by scattergram which reflects the spatial variation, using data observed during same period. The scattergram showed that the observation made at Cheongyang seemed to have better quality in spatial continuity and stability, and the restoration result was also better than that of Icheon site. For the restoration, both of the methods, geostatistical and optimizaed PCA, showed stable result when the missing of observation was within 20 points. However, in case of more missing observations than 20 points and prediction problem, the optimized PCA seemed to be closer to the real observation considering the frequency-domain characteristics. The prediction using the optimized PCA seems to be plausible for one day of period for interpretation.

Imputation of Multiple Missing Values by Normal Mixture Model under Markov Random Field: Application to Imputation of Pixel Values of Color Image (마코프 랜덤 필드 하에서 정규혼합모형에 의한 다중 결측값 대체기법: 색조영상 결측 화소값 대체에 응용)

  • Kim, Seung-Gu
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.6
    • /
    • pp.925-936
    • /
    • 2009
  • There very many approaches to impute missing values in the iid. case. However, it is hardly found the imputation techniques in the Markov random field(MRF) case. In this paper, we show that the imputation under MRF is just to impute by fitting the normal mixture model(NMM) under several practical assumptions. Our multivariate normal mixture model based approaches under MRF is applied to impute the missing pixel values of 3-variate (R, G, B) color image, providing a technique to smooth the imputed values.

A comparison of imputation methods using nonlinear models (비선형 모델을 이용한 결측 대체 방법 비교)

  • Kim, Hyein;Song, Juwon
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.4
    • /
    • pp.543-559
    • /
    • 2019
  • Data often include missing values due to various reasons. If the missing data mechanism is not MCAR, analysis based on fully observed cases may an estimation cause bias and decrease the precision of the estimate since partially observed cases are excluded. Especially when data include many variables, missing values cause more serious problems. Many imputation techniques are suggested to overcome this difficulty. However, imputation methods using parametric models may not fit well with real data which do not satisfy model assumptions. In this study, we review imputation methods using nonlinear models such as kernel, resampling, and spline methods which are robust on model assumptions. In addition, we suggest utilizing imputation classes to improve imputation accuracy or adding random errors to correctly estimate the variance of the estimates in nonlinear imputation models. Performances of imputation methods using nonlinear models are compared under various simulated data settings. Simulation results indicate that the performances of imputation methods are different as data settings change. However, imputation based on the kernel regression or the penalized spline performs better in most situations. Utilizing imputation classes or adding random errors improves the performance of imputation methods using nonlinear models.

Comparision of Missing Imputaion Methods In fine dust data (미세먼지 자료에서의 결측치 대체 방법 비교)

  • Kim, YeonJin;Park, HeonJin
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.105-114
    • /
    • 2019
  • Missing value replacement is one of the big issues in data analysis. If you ignore the occurrence of the missing value and proceed with the analysis, a bias can occur and give incorrect results for the estimate. In this paper, we need to find and apply an appropriate alternative to missing data from weather data. Through this, we attempted to clarify and compare the simulations for various situations using existing methods such as MICE and MissForest based on R and time series-based models. When comparing these results with each variable, it was determined that the kalman filter of the auto arima model using the ImputeTS package and the MissForest model gave good results in the weather data.

  • PDF

Calibration of Real Time Rainfall Data Using Mutual Information and Artificial Neural Network (상호정보량 기법과 인공신경망을 이용한 실시간 강우 자료 보정)

  • Sung, Kyung-Min;Goo, Yeo-Joo;Kim, Tae-Soon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1269-1273
    • /
    • 2010
  • 이러한 강우자료의 결측값이나 오자료를 보정하는 것은 그 유역의 정확한 수문학적 특성 파악 및 안전한 수공구조물의 설계에 영향을 미치게 되므로 매우 중요하다고 할 수 있다. 최근 이러한 강우자료를 비선형적 모델인 인공신경망(Artificial Neural Network)을 이용하여 보정하는 연구가 활발히 진행되고 있다(오재우 등, 2008). 그러나 이러한 인공신경망을 적용하는 경우, 선택한 신경망 구조의 형태와 학습(training)을 위해 사용되는 자료가 전체 자료의 특성을 반영하고 있는 정도에 따라 정확도에 차이를 보인다(한광희 등, 2010). 따라서 자료보정을 위한 입력 자료의 선택은 인공신경망을 이용한 결측치 보정의 중요한 과정이다. 본 연구에서는 이러한 입력 자료의 선택을 위한 여러 가지 기법 중 입력 변수간의 상호정보량 (Mutual Information)을 이용한 방법을 적용하여 대상 결측 지점을 보정할 강우지점을 선별한 후 선택된 지점만으로 인공신경망을 구성하여 강우자료를 보정하고 주변 자료를 모두 이용한 결과와 상관성분석으로 얻어진 결과와 비교하였다.

  • PDF

The Comparison of Imputation Methods in Space Time Series Data with Missing Values (공간시계열모형의 결측치 추정방법 비교)

  • Lee, Sung-Duck;Kim, Duck-Ki
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.2
    • /
    • pp.263-273
    • /
    • 2010
  • Missing values in time series can be treated as unknown parameters and estimated by maximum likelihood or as random variables and predicted by the conditional expectation of the unknown values given the data. The purpose of this study is to impute missing values which are regarded as the maximum likelihood estimator and random variable in incomplete data and to compare with two methods using ARMA and STAR model. For illustration, the Mumps data reported from the national capital region monthly over the years 2001~2009 are used, and estimate precision of missing values and forecast precision of future data are compared with two methods.