• Title/Summary/Keyword: 자동 작문 평가 시스템

Search Result 9, Processing Time 0.022 seconds

Evaluation Category Selection For Automated Essay Evaluation of Korean Learner (한국어 학습자 작문 자동 평가를 위한 평가 항목 선정)

  • Kwak, Yong-Jin
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.270-271
    • /
    • 2017
  • 본 연구는 한국어 학습자 작문의 자동 평가 시스템 개발의 일환으로, 자동 평가 결과에 대한 설명과 근거가 될 수 있는 평기 기준 범주를 선정하기 위한 데이터 구축과 선정 방법을 제시한다. 작문의 평가 기준의 영역과 항목은 평가체계에 대한 이론적 연구에 따라 다양하다. 이러한 평가 기준은 자동 평가에서는 식별되기 어려운 경우도 있고, 각각의 평가 기준이 적용되는 작문 오류의 범위도 다양하다. 그러므로 본 연구에서는 자동 평가 기준 선정의 문제는 다양한 평가 기준에 중 하나를 선정하는 분류의 문제로 보고, 학습데이터를 구축, 기계학습을 통해 자동 작문 평가에 효과적인 평가 기준을 선정 가능성을 제시한다.

  • PDF

Evaluation Category Selection For Automated Essay Evaluation of Korean Learner (한국어 학습자 작문 자동 평가를 위한 평가 항목 선정)

  • Kwak, Yong-Jin
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.270-271
    • /
    • 2017
  • 본 연구는 한국어 학습자 작문의 자동 평가 시스템 개발의 일환으로, 자동 평가 결과에 대한 설명과 근거가 될 수 있는 평기 기준 범주를 선정하기 위한 데이터 구축과 선정 방법을 제시한다. 작문의 평가 기준의 영역과 항목은 평가체계에 대한 이론적 연구에 따라 다양하다. 이러한 평가 기준은 자동 평가에서는 식별되기 어려운 경우도 있고, 각각의 평가 기준이 적용되는 작문 오류의 범위도 다양하다. 그러므로 본 연구에서는 자동 평가 기준 선정의 문제는 다양한 평가 기준에 중 하나를 선정하는 분류의 문제로 보고, 학습데이터를 구축, 기계학습을 통해 자동 작문 평가에 효과적인 평가 기준을 선정 가능성을 제시한다.

  • PDF

Developing an Automated English Sentence Scoring System for Middle-school Level Writing Test by Using Machine Learning Techniques (기계학습을 이용한 중등 수준의 단문형 영어 작문 자동 채점 시스템 구현)

  • Lee, Gyoung Ho;Lee, Kong Joo
    • Journal of KIISE
    • /
    • v.41 no.11
    • /
    • pp.911-920
    • /
    • 2014
  • In this paper, we introduce an automatic scoring system for middle-school level writing test based on using machine learning techniques. We discuss overall process and features for building an automatic English writing scoring system. A "concept answer" which represents an abstract meaning of text is newly introduced in order to evaluate the elaboration of a student's answer. In this work, multiple machine learning algorithms are adopted for scoring English writings. We suggest a decision process "optimal combination" which optimally combines multiple outputs of machine learning algorithms and generates a final single output in order to improve the performance of the automatic scoring. By experiments with actual test data, we evaluate the performance of overall automated English writing scoring system.

Assessment of Writing Fluency For Automated English Essay Scoring (영어 논술 자동 평가를 위한 언어 유창성 측정 방법)

  • Yang, Min-Chul;Kim, Min-Jeong;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 2011.10a
    • /
    • pp.25-29
    • /
    • 2011
  • 영어 논술 자동 평가 시스템은 수험자가 쓴 에세이에 대하여 전문 평가자가 직접 읽고 평가하는 방식에서 벗어나 웹상에서 자동으로 평가 받을 수 있는 실시간 시스템이다. 하지만 비영어권 수험자에게는 논리력 혹은 작문 능력보다 그것을 영어로 표현하는 유창성에서 더 큰 문제가 있을 수 있는데 기존 연구에서는 이런 측면에 대한 평가가 부족하였다. 본 연구에서는 보다 정확한 비영어권 수험자의 영어 논술 평가를 위해 어휘력, 문장 구조의 다양성, 문장의 혼잡도를 평가하여 언어 유창성에 집중된 기계학습 방법의 추가적인 자질을 제안한다. 실험 결과 전문 평가자의 점수와 1) 상관관계 2) 정확도 측면에서 제안하는 방법은 기존의 방법에 비해 더 나은 성능을 보였다.

  • PDF

An English Essay Scoring System Based on Grammaticality and Lexical Cohesion (문법성과 어휘 응집성 기반의 영어 작문 평가 시스템)

  • Kim, Dong-Sung;Kim, Sang-Chul;Chae, Hee-Rahk
    • Korean Journal of Cognitive Science
    • /
    • v.19 no.3
    • /
    • pp.223-255
    • /
    • 2008
  • In this paper, we introduce an automatic system of scoring English essays. The system is comprised of three main components: a spelling checker, a grammar checker and a lexical cohesion checker. We have used such resources as WordNet, Link Grammar/parser and Roget's thesaurus for these components. The usefulness of an automatic scoring system depends on its reliability. To measure reliability, we compared the results of automatic scoring with those of manual scoring, on the basis of the Kappa statistics and the Multi-facet Rasch Model. The statistical data obtained from the comparison showed that the scoring system is as reliable as professional human graders. This system deals with textual units rather than sentential units and checks not only formal properties of a text but also its contents.

  • PDF

A English Composition Level Assessment System Using Machine Learning Techniques (기계학습기법을 이용한 영어작문 문장 수준평가 시스템)

  • Eom, Jin-Hee;Kwak, Dong-Min
    • Annual Conference of KIPS
    • /
    • 2013.11a
    • /
    • pp.1290-1293
    • /
    • 2013
  • 본 논문은 문장 내에서 나타나는 어휘간의 관계를 통해 표현 수준을 자동으로 평가할 수 있는 시스템을 제안한다. 제안하는 방법은 영어에세이 코퍼스 내의 문장에서 발생하는 철자 및 문법의 오류와 함께 어휘와 문법 패턴에 따른 표현난이도를 평가할 수 있는 자질을 생성하고 다양한 기계학습기법을 사용하여 문장의 수준을 평가하고자 하였다. 또한 기존에 연구되어온 규칙기반의 문장 평가시스템을 구현하고 기계학습기법을 이용한 문장 평가시스템과 비교하였다. 이를 통해 철자 및 문법의 오류율뿐만 아니라 표현난이도를 평가할 수 있는 자질들이 유용함을 확인할 수 있었다. 영어작문 문장의 수준평가를 위해서 국내 학생들의 토플 에세이 코퍼스를 수집하여 2,000문장을 추출하였고, 4명의 전문평가자들을 통해 6단계로 평가하여 학습 및 테스트 세트를 구성하였다. 성능척도로는 정확률과 재현율을 사용하였으며, 제안하는 방법으로 67.3%의 정확률과 67.1%의 재현율을 보였다.

Swear Word Detection and Unknown Word Classification for Automatic English Writing Assessment (영작문 자동평가를 위한 비속어 검출과 미등록어 분류)

  • Lee, Gyoung;Kim, Sung Gwon;Lee, Kong Joo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.9
    • /
    • pp.381-388
    • /
    • 2014
  • In this paper, we deal with implementation issues of an unknown word classifier for middle-school level English writing test. We define the type of unknown words occurred in English text and discuss the detection process for unknown words. Also, we define the type of swear words occurred in students's English writings, and suggest how to handle this type of words. We implement an unknown word classifier with a swear detection module for developing an automatic English writing scoring system. By experiments with actual test data, we evaluate the accuracy of the unknown word classifier as well as the swear detection module.

Context-sensitive Word Error Detection and Correction for Automatic Scoring System of English Writing (영작문 자동 채점 시스템을 위한 문맥 고려 단어 오류 검사기)

  • Choi, Yong Seok;Lee, Kong Joo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.1
    • /
    • pp.45-56
    • /
    • 2015
  • In this paper, we present a method that can detect context-sensitive word errors and generate correction candidates. Spelling error detection is one of the most widespread research topics, however, the approach proposed in this paper is adjusted for an automated English scoring system. A common strategy in context-sensitive word error detection is using a pre-defined confusion set to generate correction candidates. We automatically generate a confusion set in order to consider the characteristics of sentences written by second-language learners. We define a word error that cannot be detected by a conventional grammar checker because of part-of-speech ambiguity, and propose how to detect the error and generate correction candidates for this kind of error. An experiment is performed on the English writings composed by junior-high school students whose mother tongue is Korean. The f1 value of the proposed method is 70.48%, which shows that our method is promising comparing to the current-state-of-the art.

Effect of Application of Ensemble Method on Machine Learning with Insufficient Training Set in Developing Automated English Essay Scoring System (영작문 자동채점 시스템 개발에서 학습데이터 부족 문제 해결을 위한 앙상블 기법 적용의 효과)

  • Lee, Gyoung Ho;Lee, Kong Joo
    • Journal of KIISE
    • /
    • v.42 no.9
    • /
    • pp.1124-1132
    • /
    • 2015
  • In order to train a supervised machine learning algorithm, it is necessary to have non-biased labels and a sufficient amount of training data. However, it is difficult to collect the required non-biased labels and a sufficient amount of training data to develop an automatic English Composition scoring system. In addition, an English writing assessment is carried out using a multi-faceted evaluation of the overall level of the answer. Therefore, it is difficult to choose an appropriate machine learning algorithm for such work. In this paper, we show that it is possible to alleviate these problems through ensemble learning. The results of the experiment indicate that the ensemble technique exhibited an overall performance that was better than that of other algorithms.