• 제목/요약/키워드: 자동 분할

검색결과 1,002건 처리시간 0.025초

칼라 유방암조직영상에서 질감 특성과 신경회로망을 이용한 양성세포핵과 음성세포핵의 자동 분할 (Automatic Segmentation of Positive Nuclei and Negative Nuclei on Color Breast Carcinoma Cell Image Using Texture Feature and Neural Network Classification)

  • 최현주;허민권;최흥국;김상균;최항묵;박세명
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.422-424
    • /
    • 1999
  • 본 논문에서는 질감 특징과 신경회로망을 이용한 유방암조직영상의 분할 방법을 제안한다. 신경회로망의 입력 노드에 사용될 질감 특징을 얻기 위해 10개의 영상에 대해 각 영역(양성세포핵, 음성세포핵, 배경)에서 10개씩의 화소를 선택하고, 그 화소를 중심으로 하는 5$\times$5 영역 30개를 획득, 총 300개의 영역에 대해 R, G, B 각각의 밴드에서 18개의 질감특징을 추출한다. 54개의 입력노드, 28개의 은닉노드, 3개의 출력노드의 구조를 가진 신경회로망을 구성하고, 역전파 학습 알고리즘을 사용하여 신경회로망을 최대오차율이 10-3보다 작을 때까지 학습시킨다. 학습에 의해 획득되어진 분류기를 이용하여 유방암 조직 세포영상을 양성세포핵, 음성세포핵, 배경부분으로 자동 분할한다.

  • PDF

한글 트루타입폰트 및 손글씨의 자동 획 분할 알고리즘 (Automatic Stroke Extraction of TrueType Font and Handwriting of Hangul)

  • 곽윤석;구상옥;정순기
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2008년도 한국컴퓨터종합학술대회논문집 Vol.35 No.1 (B)
    • /
    • pp.275-280
    • /
    • 2008
  • 본 논문에서는 한글 글립(glyph)의 형태학적 분석을 통해 자동으로 획을 분할하는 방법을 제안한다. 제안된 방법은 thinning된 한글 글립의 골격(skeleton) 이미지를 기반으로, 획 분리, 획 병합, 그리고 획 볼륨 복원의 세가지 단계를 거쳐 한글의 기본 획들을 추출해 낸다. 실험 결과, 트루타입폰트(TrueType Font)에 대해서는 80%, 손글씨(Handwriting) 글립에 대해서는 72%의 획 분할 정확도를 보였다. 본 논문에서 제안한 방법으로 획득된 획 정보를 이용하여, 향후 한글 손글씨 생성을 위한 연구를 하고자 한다.

  • PDF

3차원 영상의 자동 소실점 검출을 위한 분할 영상 좌표계 (Split Image Coordinate for Automatic Vanishing Point Detection in 3D images)

  • 이정화;김종화;서경석;최흥문
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.1891-1894
    • /
    • 2003
  • 본 논문에서는 분할 영상 좌보계 (split image coordinate: SIC)를 제안하여 3차원 영상의 주요 특징 중의 하나인 유, 무한 소실점을 그 위치의 무한성이나 카메라의 보정과 관계없이 정확하게 자동 추출하였다. 제안한 방법에서는 가우시안 구 (Gaussian sphere) 기반의 기존 방법들과는 달리 영상 공간을 누적 공간으로 활용함으로써 카메라 보정이나 영상의 사전정보가 없어도 원 영상의 정보 손실 없이 소실점을 추출할 수 있고, 영상을 무한대까지 확장한 후 분할하여 재정의 함으로써 유, 무한 소실점을 모두 추출할 수 있도록 하였다. 정확한 소실점의 검출을 위하여 직선 검출 과정에서는 방향성 마스크 (mask)를 사용하였으며, 직선들의 군집화 (clustering) 과정에서는 기울기 히스토그램 방법과 수평/수직 군집화 방법을 적응적으로 적용하였다. 제안한 방법을 합성 영상 및 건축물 (man-made environment) 영상에 적용시켜 유, 무한 소실점들을 효과적이고 정확하게 찾을 수 있음을 확인하였다.

  • PDF

기울기 벡터 플로우를 이용한 뇌출혈의 3차원 모델링 (3D Modeling of Cerebral Hemorrhage using Gradient Vector Flow)

  • 최석윤
    • 한국방사선학회논문지
    • /
    • 제18권3호
    • /
    • pp.231-237
    • /
    • 2024
  • 뇌손상에서 생존자의 경우 지속적인 장애를 유발하고 뇌출혈에 따른 경막외 혈종(EDH) 및 경막하 혈종(SDH)은 주요 임상 질환 중 하나라고 볼 수 있다. 본 연구에서는 컴퓨터단층검사(CT; Computed Tomography) 영상을 기반으로 뇌출혈에 따른 혈종을 자동 분할하고 3차원으로 모델링하고자 하였다. 혈종의 자동 분할을 위해서 개선된 GVF(gradient vector flow) 알고리즘을 구현하였다. 영상으로부터 경사 벡터를 계산과 반복계산을 거친 후 자동 분할을 하고 분할 좌표를 이용해서 3차원 모델을 생성하였다. 실험결과, 혈종의 경계에 대해서 정확하게 분할 성공하였다. 경계 부분과 얇은 혈종부분에서도 결과가 좋은 것으로 나타났고, 3차원 모델을 통해서 여러 방향에서 혈종의 강도, 확산 방향, 면적 등을 알 수 있었다. 본 연구에서 개발 한 뇌출혈 부위의 평면정보와 3차원 모델은 의료진에게 보조적인 진단자료로서 활용 될 수 있을 것으로 판단한다.

변형된 FCM을 이용한 칼라영상의 영역분할과 클러스터 수 결정 (Image Segmentation and Determination of the Count of Clusters using Modified Fuzzy c-Means Clustering Algorithm)

  • 윤후병;정성종;안동언;두길수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(3)
    • /
    • pp.177-180
    • /
    • 2001
  • 영상에 존재하는 객체들을 인식하기 위해서는 먼저 영상의 영역분할이 필요하다. 통계적 모델을 이용한 영상의 영역분할은 미리서 분할하고자 하는 클러스터의 수를 결정한 후 이를 토대로 영상을 분할하게 된다. 그러나 영상마다 특성상 분할하고자 하는 클러스터 수가 다를 경우 이를 수동적으로 해주는 것은 비능률적이다. 따라서 본 논문은 영상의 영역분할에 통계적 모델에서 미리 결정해줘야 하는 클러스터의 수 문제를 자동으로 검출하고 퍼지 c-Means 글러스터링 알고리즘을 통한 영상의 영역분할 시 노이즈문제를 이웃한 픽셀들의 멤버쉽 값을 평균화합으로써 해결하는 방법을 제안하였다.

  • PDF

부분 히스토그램 문턱치 알고리즘을 사용한 조영증강 CT영상의 자동 간 분할 (Automatic Liver Segmentation of a Contrast Enhanced CT Image Using a Partial Histogram Threshold Algorithm)

  • Kyung-Sik Seo;Seung-Jin Park;Jong An Park
    • 대한의용생체공학회:의공학회지
    • /
    • 제25권3호
    • /
    • pp.189-194
    • /
    • 2004
  • 조영 증강된 CT 영상의 화소값은 조영제에 의해 이산적으로 변한다. 또한 간의 중간부분에서는 간과 유사한 농도값을 갖는 췌장 때문에 간의 분할이 어렵다. 본 논문에서는 조영증강된 CT영상의 화소값의 이산적인 변화와 간과 겹치는 췌장을 제거하기 위하여 부분 히스토램 문턱치 알고리즘을 사용한 간 분할법을 제안한다. 히스토그램 변환 후 간 구조의 농도 값의 범위를 찾기 위한 적응 다봉성 분할과 췌장 제거를 위한 부분 히스토그램 문턱치 알고리즘을 수행한다. 다음으로, 간 이외의 불필요한 대상을 제거하고 경계를 매끈하게 하기 위해 모폴러지 필터링을 수행한다. 제안된 방법을 평가하기 위해 8명의 환자로부터 획득된 CT 영상중 중간부분에서 4개씩 총 32단면을 선택하였다. 부분 히스토그램 문턱치 알고리즘을 사용한 자동 분할법 II와 수동 분할법의 정규화된 평균 면적의 평균은 0.1671과 0.1711이었으며, 이 두 방법은 아주 적은 차이를 보인다. 또, 자동 분할법 II와 수동 분할법의 평균 면적 오차율은 6.8339 % 이다. 이 실험 결과로부터 제안된 자동 간분할 법은 의사에 의해 시행된 수동 분할법과 매우 유사한 수행능력을 갖는다.

유전자 알고리즘 기반의 비지도 객체 분할 방법 (Unsupervised Segmentation of Objects using Genetic Algorithms)

  • 김은이;박세현
    • 전자공학회논문지CI
    • /
    • 제41권4호
    • /
    • pp.9-21
    • /
    • 2004
  • 본 논문은 동영상내의 객체를 자동으로 추출하고 추적할 수 있는 유전자 알고리즘 기반의 분할 방법을 제안한다. 제안된 방법은 시간 분할과 공간 분할로 이루어진다. 공간 분할은 각 프레임을 정확한 경계를 가진 영역으로 나누고 시간 분할은 각 프레임을 전경 영역과 배경 영역으로 나눈다. 공간 분할은 분산 유전자 알고리즘을 이용하여 수행된다. 그러나, 일반적인 유전자 알고리즘과는 달리, 염색체는 이전 프레임의 분할 결과로부터 초기화되고, 동적인 객체 부분에 대응하는 불안정 염색체만이 진화연산자에 의해 진화된다. 시간 분할은 두 개의 연속적인 프레임의 밝기 차이에 기반을 둔 적응적 임계치 방법에 의해 수행한다. 얻어진 공간과 시간 분할 결과의 결합을 통해서 객체를 추출하고, 이 객체들은 natural correspondence에 의해 전체 동영상을 통해 정확히 추적된다. 제안된 방법은 다음의 두 가지 장점을 가진다. 1) 제안된 비디오 분할 방법은 사전 정보를 필요로 하지 않는 자동 동영상 분할 방법이다. 2) 제안된 공간 분할방법은 기존의 유전자 알고리즘보다 해공간의 효율적인 탐색을 제공할 수 있을 뿐만 아니라, 정확한 객체 추적 메커니즘을 포함하고 있는 새로운 진화 알고리즘이다. 이러한 장점들은 제안된 방법이 잘 알려진 동영상과 실제 동영상에 성공적으로 적용됨을 통해 검증된다.

무릎 MR 영상에서 다중 아틀라스 기반 지역적 가중투표를 이용한 대퇴부 연골 자동 분할 (Automatic Segmentation of Femoral Cartilage in Knee MR Images using Multi-atlas-based Locally-weighted Voting)

  • 김현아;김현진;이한상;홍헬렌
    • 정보과학회 논문지
    • /
    • 제43권8호
    • /
    • pp.869-877
    • /
    • 2016
  • 본 논문에서는 무릎 MR 영상에서 다중 아틀라스 기반 지역적 가중투표를 이용한 대퇴부 연골 자동 분할 방법을 제안한다. 제안하는 방법은 다음의 두 단계로 구성된다. 첫째, 대퇴부 연골이 대퇴골에 붙어 있다는 형상정보를 이용하기 위해 볼륨 및 객체 정합 기반의 지역적 가중투표와 협대역 영역확장을 통해 대퇴골을 분할한다. 둘째, 대퇴골의 객체 기반 어파인 변환을 대퇴부 연골 정합에 적용한 후, 다중 아틀라스 형상 기반의 지역적 가중투표를 통해 대퇴부 연골을 분할한다. 제안 방법의 성능을 평가하기 위해 다수투표 기법, 밝기값 기반 지역적 가중투표 기법과 제안 방법의 분할 결과를 전문가에 의한 수동 분할 결과와 비교한다. 실험 결과 제안 방법이 주변 유사 밝기값 영역으로의 누출을 방지하여 분할 정확도가 향상되었음을 보여준다.

측면윤곽 패턴을 이용한 접합 문자 분할 연구 (Character Segmentation using Side Profile Pattern)

  • 정민철
    • 지능정보연구
    • /
    • 제10권3호
    • /
    • pp.1-10
    • /
    • 2004
  • 본 논문에서는 영문 인쇄체의 접합 문자를 분할하는 새로운 알고리듬을 제안한다. 본 논문에서 제안하는 문자 분할의 접근 방식은 특징을 기반으로 한 접근 방식(feature-based approaches)과 인식을 기반으로 한 접근 방식(recognition-based approaches)의 단점을 보안한 새로운 문자 분할 방법이다. 접합 문자의 측면 윤곽 특징을 정의하고, 그 측면 윤곽 특징을 이용하여 문자 인식의 도움 없이도 접합 문자 내의 문자를 일차 내정하여 분할 한 후 다시 측면 윤곽 특징을 이용하여 문자 분할을 최종 확정한다. 또한 본 논문에서는 분할 비용을 정의하는데, 분할 비용은 최적의 경로로 문자 분할을 수행하도록 한다. 제안된 문자 분할의 성능은 U.S. 메일에서 주소를 자동으로 인식하여 메일을 자동으로 도착지별로 분류하는 시스템(Envelope Reader System)을 이용해 구해졌다. 3359개의 메일이 실험되어졌는데, 제안된 문자 분할 알고리즘에 의해 분류율이 $68.92\%$에서 $80.08\%$로 성능이 향상되었다.

  • PDF

자동검침 데이터를 이용한 고객 분류 기법에 대한 연구 (A Study for Customer Clustering Mechanism using Automatic Meter Reading Data)

  • 김영일;신진호;송재주;이봉재
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.179-180
    • /
    • 2008
  • 배전선로의 효과적인 운영을 위해 최근 들어 자동검침 데이터를 활용한 부하분석에 대한 연구가 진행되고 있다. 일반적인 부하분석 방식은 자동검침 고객의 데이터를 이용하여 대표 부하패턴을 생성하고 이를 이용하여 미 검침 고객의 부하패턴을 생성하여, 전체 배전선로의 회선 및 구간에 대한 15분/시간/일/주/월 단위의 최대부하 및 부하패턴 등을 분석하는 방법이다. 기존에는 고객을 분류하기 위해 계약종별 코드만을 사용하였으나, 같은 계약종별 코드를 갖는 고객이라 하더라도 부하패턴이 다른 경우가 많아서 부하분석의 정확도를 떨어뜨렸다. 본 연구에서는 고객의 계약종별 코드뿐 아니라 다양한 고객속성 정보와 15분 단위 자동검침 데이터를 이용하여 k-means 기법을 통해 고객을 분류하는 방식을 제안하였다.

  • PDF