• 제목/요약/키워드: 자동 분류

검색결과 1,710건 처리시간 0.031초

Fully-Polarimetric ALOS-2 자료를 이용한 산사태 탐지 알고리즘 개발 (Development of Landslide Detection Algorithm Using Fully Polarimetric ALOS-2 SAR Data)

  • 김민화;조근후;박상은;조재형;문효이;한승훈
    • 자원환경지질
    • /
    • 제52권4호
    • /
    • pp.313-322
    • /
    • 2019
  • SAR (Synthetic Aperture Radar) 원격탐사 관측 자료는 폭우나 태풍으로 인해 넓은 지역에 걸쳐 발생할 수 있는 산사태 피해 지역을 신속하게 탐지하는데 매우 유용한 도구이다. 본 연구의 목적은 산사태 발생 이후에 관측이 수행된 다중 편광 SAR 자료를 이용하여 산사태 지역을 자동으로 분류하는 효과적인 알고리즘을 개발하는 것이다. 실험적인 분석을 바탕으로 SAR 관측 자료로부터 산사태를 탐지하기 위해서는 SAR 영상의 스펙클 현상을 줄여주는 스펙클 필터와 경사진 지형에서의 기하왜곡을 보정하는 정사보정이 필수적임을 확인하였고, IDAN 필터를 적용하여 스펙클을 줄이고 다중 편광 파라미터를 추정한 후에 정사보정을 수행하는 것이 산사태 탐지를 위해 적합한 처리 과정임을 제시하였다. 또한 다양한 다중 편광 파라미터에 대한 탐지 성능 분석을 통해 entropy 파라미터가 산사태 탐지에 좋은 성능을 보임을 파악하였다. 이러한 분석을 토대로 다중 편광 파라미터에 대한 자동적인 문턱값 설정과 DEM을 보조적으로 사용하는 산사태 탐지 알고리즘을 제안하였다. 탐지 알고리즘은 2011년 9월 태풍 탈라스에 의해 발생한 산사태에 대해 관측을 수행한 ALOS-2위성의 PALSAR-2 자료를 이용하여 실험적인 평가를 수행하였고, 약 82%의 탐지율과 3%의 오경보율로 산사태를 탐지 할 수 있음을 확인하였다.

중소기업 스마트공장 구축을 위한 OpenCV 기반 재고관리 시스템의 설계 및 구현 (Design and Implementation of OpenCV-based Inventory Management System to build Small and Medium Enterprise Smart Factory)

  • 장수환;정종필
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.161-170
    • /
    • 2019
  • 다품종 대량 생산 중소기업 공장에서는 제품의 종류가 다양하고 그 수량이 많기 때문에 재고의 관리를 위한 인력과 경비가 낭비되고 있다. 또한 재고의 현황을 실시간으로 확인 할 방법이 마련 되있지 않아서 재고의 과적재, 과부족 현상으로 인한 경제적 피해를 받고 있다. 실시간 데이터 수집 환경을 구축하기 위한 많은 방안이 있지만 대부분 구축비용과 시간이 중소 중견기업이 감당하기 어려운 수준이다. 그렇기 때문에 중소 중견기업의 스마트 공장은 구현되기 어려운 현실을 마주하고 있으며, 적절한 대책을 찾기 힘든 실정이다. 따라서 본 논문에서는 현재 생산품 관리 기술로 많이 채택되는 바코드, QR코드와 함께 라벨에 표기되어 있는 글자추출을 통해 기존 재고관리 방법의 확장에 대한 내용을 구현하고 그 효과를 평가하였다. 기술적으로는 컴퓨터 이미지 처리를 통해서 기존의 생산품의 입출고 관리를 위한 방법인 재고라벨 및 바코드에 대한 자동인식 및 분류를 하기 위한 OpenCV를 이용한 전처리, 구글 비젼 API의 OCR(Optical Character Recognition)기능을 통해서 글자를 추출하고, Zbar를 통해서 바코드를 인식할 수 있게 설계하였고, 값비싼 장비를 사용하지 않고 라즈베리파이를 통해 실시간 영상을 통한 인식으로 재고를 관리할 수 있는 방법을 제안한다.

NB-IoT를 활용한 발열 제어 시스템 구현 (Implementation of Heat Control System using NB-IoT)

  • 신동근;김형진
    • 한국정보전자통신기술학회논문지
    • /
    • 제12권2호
    • /
    • pp.135-141
    • /
    • 2019
  • 사물인터넷이 활성화 되면서 많은 센서 디바이스들이 늘어나고 있다. 센서들은 네트워크 유선망을 설치하여 사용하거나 이동통신망을 사용할 수 있다. 이동통신망은 전송률 관점에서 볼 때 크게 고속 통신과 저속통신 두 가지로 분류 할 수 있다. 이동 통신망에서 수억 개의 센서들의 경우 고속 통신을 사용하기에는 자원 낭비가 심하게 발생하게 된다. 이러한 자원을 낭비하지 않고 전송 속도를 줄이고 자원을 적절히 할당하여 이용할 수 있는 통신이 필요하다. 최근 이동통신에서 저전력 기술 중 하나인 협대역 인터넷(NB-IoT)이 여러 기업에서 각광받고 있다. 현재 NB-IoT 또는 기타 저전력 통신들만이 빠르게 늘어나는 센서 디바이스들을 인터넷에 연결시킬 수 있는 가능성을 가지고 있다고 볼 수 있다. 본 논문에서는 화웨이 NB-IoT 통신 모듈을 이용한 히터 제어 장치, 제어 장치의 정보를 수집하는 서버, 장치에 기본 설정을 할 수 있는 응용프로그램을 설계 및 구현하였다. 이 시스템의 주요 기능은 온도 및 히터 상태 수집하여 서버에 주기 보고, 서버에서의 히터 제어, 히터가 자동으로 동작하기 위한 파라미터 설정이 있다. 본 시스템은 히터뿐만 아니라 도로 정보, 스마트 농업, 소규모 저수지 등 유선 통신이 구축 되지 않은 곳에 응용할 수 있다.

심층 신경망을 이용한 탄성파 속도 모델 구축 사례 분석 (Case Analysis of Seismic Velocity Model Building using Deep Neural Networks)

  • 조준현;하완수
    • 지구물리와물리탐사
    • /
    • 제24권2호
    • /
    • pp.53-66
    • /
    • 2021
  • 속도 모델 구축은 탄성파 탐사 자료처리에서 필수적인 절차이다. 주시 토모그래피나 속도 분석과 같은 기존 기법들은 하나의 속도 모델을 예측하는 데 계산 시간이 오래 걸리며 역산 결과의 품질이 전문가의 판단에 크게 의존한다. 전파형 역산 또한 초기 속도 모델에 크게 의존한다는 문제가 있다. 최근 심층 신경망 기법이 복잡하고 비선형적인 문제를 푸는데 적용되는 사례가 많아지면서 널리 보급되고 있다. 이 논문에서는 심층 신경망 기법을 이용한 탄성파 속도 모델 구축 사례들을 각 연구에 사용한 신경망에 따라 분류하며 조사하였다. 또한 훈련용 인공 속도 모델 생성 사례도 포함하였다. 심층 신경망은 대량의 데이터로부터 신경망을 훈련함으로써 모델 매개변수를 자동으로 최적화한다. 따라서 기존 기법들에 비해 역산 결과에 사람의 판단이 개입될 여지가 적으며 훈련을 마친 후 하나의 속도 모델을 예측하는 비용은 무시할 수 있다. 또한, 심층 신경망은 전파형 역산과 달리 초기 속도 모델이 필요하지 않다. 여러 연구에서 계산 비용뿐만 아니라 역산 결과에서도 심층 신경망 기법이 뛰어난 성과를 달성하는 것을 보여주었다. 연구 결과들을 바탕으로 속도 모델 구축에 사용된 심층 신경망 기법의 특징에 대해 분석하고 논의하였다.

Probing Sentence Embeddings in L2 Learners' LSTM Neural Language Models Using Adaptation Learning

  • Kim, Euhee
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권3호
    • /
    • pp.13-23
    • /
    • 2022
  • Prasad et al.는 사전학습(pre-trained)한 신경망 L1 글로다바(Gulordava) 언어모델을 여러 유형의 영어 관계절과 등위절 문장들로 적응 학습(adaptation learning)시켜 문장 간 유사성(sentence similarity)을 평가할 수 있는 통사 프라이밍(syntactic priming)-기반 프로빙 방법((probing method)을 제안했다. 본 논문에서는 한국인 영어학습자가 배우는 영어 자료를 바탕으로 훈련된 L2 LSTM 신경망 언어 모델의 영어 관계절 혹은 등위절 구조의 문장들에 대한 임베딩 표현 방식을 평가하기 위하여 프로빙 방법을 적용한다. 프로빙 실험은 사전 학습한 LSTM 언어 모델을 기반으로 추가로 적응 학습을 시킨 LSTM 언어 모델을 사용하여 문장 임베딩 벡터 표현의 통사적 속성을 추적한다. 이 프로빙 실험을 위한 데이터셋은 문장의 통사 구조를 생성하는 템플릿을 사용하여 자동으로 구축했다. 특히, 프로빙 과제별 문장의 통사적 속성을 분류하기 위해 통사 프라이밍을 이용한 언어 모델의 적응 효과(adaptation effect)를 측정했다. 영어 문장에 대한 언어 모델의 적응 효과와 통사적 속성 관계를 복합적으로 통계분석하기 위해 선형 혼합효과 모형(linear mixed-effects model) 분석을 수행했다. 제안한 L2 LSTM 언어 모델이 베이스라인 L1 글로다바 언어 모델과 비교했을 때, 프로빙 과제별 동일한 양상을 공유함을 확인했다. 또한 L2 LSTM 언어 모델은 다양한 관계절 혹은 등위절이 있는 문장들을 임베딩 표현할 때 관계절 혹은 등위절 세부 유형별로 통사적 속성에 따라 계층 구조로 구분하고 있음을 확인했다.

딥러닝 기반 스타일 변환 기법을 활용한 인공 달 지형 영상 데이터 생성 방안에 관한 연구 (A Study for Generation of Artificial Lunar Topography Image Dataset Using a Deep Learning Based Style Transfer Technique)

  • 나종호;이수득;신휴성
    • 터널과지하공간
    • /
    • 제32권2호
    • /
    • pp.131-143
    • /
    • 2022
  • 달 현지 탐사를 위해 무인 이동체가 활용되고 있으며, 달 지상 관심 지역의 지형 특성을 정확하게 파악하여 실시간으로 정보화 하는 작업이 요구된다. 하지만, 정확도 높은 지형/지물 객체 인식 및 영역 분할을 위해서는 다양한 배경조건의 영상 학습데이터가 필요하며 이러한 학습데이터를 구축하는 과정은 많은 인력과 시간이 요구된다. 특히 대상이 쉽게 접근하기 힘든 달이기에 실제 현지 영상의 확보 또한 한계가 있어, 사실에 기반하지만 유사도 높은 영상 데이터를 인위적으로 생성시킬 필요성이 대두된다. 본 연구에서는 가용한 중국의 달 탐사 Yutu 무인 이동체 및 미국의 Apollo 유인 착륙선에서 촬영한 영상을 통해 위치정보 기반 스타일 변환 기법(Style Transfer) 모델을 적용하여 실제 달 표면과 유사한 합성 영상을 인위적으로 생성하였다. 여기서, 유사 목적으로 활용될 수 있는 두 개의 공개 알고리즘(DPST, WCT2)를 구현하여 적용해 보았으며, 적용 결과를 시간적, 시각적 측면으로 비교하여 성능을 평가하였다. 평가 결과, 실험 이미지의 형태 정보를 보존하면서 시각적으로도 매우 사실적인 영상을 생성할 수 있음을 확인하였다. 향후 본 실험의 결과를 바탕으로 생성된 영상 데이터를 지형객체 자동 분류 및 인식을 위한 인공지능 학습용 영상 데이터로 추가 학습된다면 실제 달 표면 영상에서도 강인한 객체 인식 모델 구현이 가능할 것이라 판단된다.

전기차 폐배터리 진단/해체 기술 동향 및 향후 친환경적 개발 전략 (Current Trend of EV (Electric Vehicle) Waste Battery Diagnosis and Dismantling Technologies and a Suggestion for Future R&D Strategy with Environmental Friendliness)

  • 변채은;서지현;이민경;;이상훈
    • 자원리싸이클링
    • /
    • 제31권4호
    • /
    • pp.3-11
    • /
    • 2022
  • 전기차 수요의 증가로 향후 폐차 혹은 배터리 노후화로 인한 폐배터리 배출량 급증이 예상됨에 따라 이에 대한 적정 관리가 시급한 실정이다. 기술개발 측면에서는 데이터 기반 진단 등 다양한 폐배터리 진단 및 관리 기술이 주목을 받고 있다. 또한 로봇기반 자동 해체 기술은 산업 현장에서의 Test 검증 및 향후 배터리 관련 데이터베이스와의 연동이 필요한 것으로 보인다. 특히 향후 폐배터리 순환과정에서의 효율화와 동시에 안전성/친환경성 제고를 위한 다양하고 선진적인 배터리 진단 및 평가기법 개발 및 보급이 중요하다. 또한 리튬 관련 화학물질 배출이동에 대한 데이터베이스화와 배터리 연소시 가스유출위험 및 소방안전에 관한 평가 및 대처가 중요할 것으로 보인다. 더 나아가 데이터 기반 진단/분류/해체 과정을 재활용/최종폐기와 연계된 다양한 관점에서의 폐배터리 전주기 관리 최적화 등에 향후 더 많은 연구개발이 필요하다고 판단된다. 그리고 일련의 데이터는 차후 배터리 생산 시 환경적 부담을 감소시키고 재이용/재활용이 원활하도록 청정설계 및 제조에 기여해야 한다. 또한 이러한 최적화는 전기차 배터리의 향후 기술 및 시장 변동을 감안하여 추진되어야 한다.

혼합형 데이터 보간을 위한 디노이징 셀프 어텐션 네트워크 (Denoising Self-Attention Network for Mixed-type Data Imputation)

  • 이도훈;김한준;전종훈
    • 한국콘텐츠학회논문지
    • /
    • 제21권11호
    • /
    • pp.135-144
    • /
    • 2021
  • 최근 데이터 기반 의사결정 기술이 데이터 산업을 이끄는 핵심기술로 자리 잡고 있는바, 이를 위한 머신러닝 기술은 고품질의 학습데이터를 요구한다. 하지만 실세계 데이터는 다양한 이유에 의해 결측값이 포함되어 이로부터 생성된 학습된 모델의 성능을 떨어뜨린다. 이에 실세계에 존재하는 데이터로부터 고성능 학습 모델을 구축하기 위해서 학습데이터에 내재한 결측값을 자동 보간하는 기법이 활발히 연구되고 있다. 기존 머신러닝 기반 결측 데이터 보간 기법은 수치형 변수에만 적용되거나, 변수별로 개별적인 예측 모형을 만들기 때문에 매우 번거로운 작업을 수반하게 된다. 이에 본 논문은 수치형, 범주형 변수가 혼합된 데이터에 적용 가능한 데이터 보간 모델인 Denoising Self-Attention Network(DSAN)를 제안한다. DSAN은 셀프 어텐션과 디노이징 기법을 결합하여 견고한 특징 표현 벡터를 학습하고, 멀티태스크 러닝을 통해 다수개의 결측치 변수에 대한 보간 모델을 병렬적으로 생성할 수 있다. 제안 모델의 유효성을 검증하기 위해 다수개의 혼합형 학습 데이터에 대하여 임의로 결측 처리한 후 데이터 보간 실험을 수행한다. 원래 값과 보간 값 간의 오차와 보간된 데이터를 학습한 이진 분류 모델의 성능을 비교하여 제안 기법의 유효성을 입증한다.

Tag2vec 기반의 지능형 불법 도박 사이트 탐지 모형 개발 (Development of an Intelligent Illegal Gambling Site Detection Model Based on Tag2Vec)

  • 송찬우;안현철
    • 지능정보연구
    • /
    • 제28권4호
    • /
    • pp.211-227
    • /
    • 2022
  • 오늘날 온라인 도박 사이트를 통한 불법 도박이 큰 사회문제가 되고 있다. 인터넷 기술의 발전과 스마트폰 보급으로 시공간의 제약이 사라지고 불법 온라인 도박을 누구나 쉽게 접근할 수 있게 되었기 때문이다. 이를 막기 위해 국내에서는 자체 모니터 요원의 탐지, '누리캅스'와 같은 제보 시스템 등을 활용해 불법 사이트를 탐지하고 있지만 이러한 수동적인 프로세스로는 인력부족 같은 한계로 모든 불법 사이트를 탐지하기 어려운 실정이다. 이에 여러 학자들이 인공지능 기반의 자동 불법 도박 사이트 탐지 기술을 연구해왔다. Xu et al. (2019)은 가짜 사이트들의 HTML Tag 구조에는 차별적인 특징이 있다는 점을 발견하였다. 이는 HTML Tag 구조가 불법 사이트를 탐지하는데 주요한 특징정보가 될 수 있음을 시사하지만, 불법 사이트 탐지 모델에 HTML Tag 구조를 반영하여 모형의 성능을 제고하고자 하는 연구는 지금까지 거의 시도되지 않았다. 이러한 배경에서 본 연구는 HTML Tag 구조를 특징화하여 모형의 성능을 향상시키고자 하였고, HTML Tag 구조를 적절하게 벡터화하기 위한 방법론으로 Doc2Vec을 변형한 Tag2Vec을 제안한다. Tag2Vec 기반 모델의 효과를 검증하기 위해 '더 치트'의 유해 사이트 목록과 Google 검색을 통한 정상 사이트 목록을 데이터 세트로 활용하여 실증분석을 수행하였다. 그 결과 비교 모델로 설정된 URL 기반 탐지 모델보다 본 연구에서 제안하는 Tag2Vec 기반 탐지 모델이 분류 정확도, Recall, F1_Score에서 모두 향상된 성능을 보임을 확인할 수 있었다. 이러한 본 연구의 제안모델은 향후 지능형 기술을 통해 우리 사회의 건강도를 제고하는데 효과적으로 활용될 수 있을 것으로 기대된다.

한국인과 한국에 거주하는 외국인간의 타인종 얼굴에 대한 ERP 요소의 흥분성 조절 비교 (Up-regulation of an ERP component toward racial-outgroup faces in Koreans but not in non-Korean visitors)

  • 김혁;이강희;김현택;최준식
    • 인지과학
    • /
    • 제33권2호
    • /
    • pp.95-107
    • /
    • 2022
  • 다른 인종의 얼굴 인식에 대한 연구는 지각, 정서, 사회문화적인 과정 등 다양한 수준에서 연구되어 왔다. 특히, "다른 인종 효과(other race effect, ORE)"와 관련된 많은 수의 연구들에서, 신원이나 정서와 같은 얼굴에 대한 미묘한 정보가 처리되는 과정에서 '다른 인종'이라는 인종적인 요소가 영향을 주는 것으로 나타났다. 하지만 인종적인 요소가 아닌, 다른 인종의 얼굴에 대한 인지적인 조절로 ORE를 설명하려는 연구는 거의 없다. 본 연구는 다른 인종의 얼굴을 처리함에 있어서 생소하기(낯설기) 때문에 나타날 수 있는 인지적인 작용 여부를 사건관련전위(event-related potential, ERP)를 이용하여 연구하였다. 22명의 한국인과 9명의 백인에게 한국인과 백인의 정서가 표현된 얼굴사진을 보여주면서 성별 분류과제를 수행하였다. 한국인의 경우 백인의 얼굴 사진에 대하여 한국인의 얼굴 사진보다 더 증가된 P3 전위 값을 보였고, 이러한 결과는 한국인들이 자극 인식 초기 과정에서 다른 인종의 얼굴 사진에 대하여 더욱 주의를 기울인 것으로 해석할 수 있다. 흥미롭게도, 백인들은 한국인의 얼굴 사진을 보았을 때 증가된 P3 전위 값을 보이지 않았는데, 아마도 실험에 참여한 백인들의 경우 한국에서 생활을 하면서 많은 사회적인 상호작용을 통하여 한국인 얼굴에 대하여 탈민감화 되어 한국인의 얼굴이 더 이상 생소하지 않기 때문인 것으로 생각된다. 이러한 결과는 다른 인종의 얼굴은 자동적으로 주의를 끌어당기는 높은 각성수준을 갖는 현저한 자극이지만, 반복적인 노출만으로도 탈민감화 되어 타인종의 얼굴에 대한 각성수준이 낮아질 수 있다는 것을 의미한다.