• Title/Summary/Keyword: 자동 기계학습

Search Result 384, Processing Time 0.028 seconds

An Opinionated Document Retrieval System based on Hybrid Method (혼합 방식에 기반한 의견 문서 검색 시스템)

  • Lee, Seung-Wook;Song, Young-In;Rim, Hae-Chang
    • Journal of the Korean Society for information Management
    • /
    • v.25 no.4
    • /
    • pp.115-129
    • /
    • 2008
  • Recently, as its growth and popularization, the Web is changed into the place where people express, share and debate their opinions rather than the space of information seeking. Accordingly, the needs for searching opinions expressed in the Web are also increasing. However, it is difficult to meet these needs by using a classical information retrieval system that only concerns the relevance between the user's query and documents. Instead, a more advanced system that captures subjective information through documents is required. The proposed system effectively retrieves opinionated documents by utilizing an existing information retrieval system. This paper proposes a kind of hybrid method which can utilize both a dictionary-based opinion analysis technique and a machine learning based opinion analysis technique. Experimental results show that the proposed method is effective in improving the performance.

Effective Fingerprint Classification using Subsumed One-Vs-All Support Vector Machines and Naive Bayes Classifiers (포섭구조 일대다 지지벡터기계와 Naive Bayes 분류기를 이용한 효과적인 지문분류)

  • Hong, Jin-Hyuk;Min, Jun-Ki;Cho, Ung-Keun;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.10
    • /
    • pp.886-895
    • /
    • 2006
  • Fingerprint classification reduces the number of matches required in automated fingerprint identification systems by categorizing fingerprints into a predefined class. Support vector machines (SVMs), widely used in pattern classification, have produced a high accuracy rate when performing fingerprint classification. In order to effectively apply SVMs to multi-class fingerprint classification systems, we propose a novel method in which SVMs are generated with the one-vs-all (OVA) scheme and dynamically ordered with $na{\ddot{i}}ve$ Bayes classifiers. More specifically, it uses representative fingerprint features such as the FingerCode, singularities and pseudo ridges to train the OVA SVMs and $na{\ddot{i}}ve$ Bayes classifiers. The proposed method has been validated on the NIST-4 database and produced a classification accuracy of 90.8% for 5-class classification. Especially, it has effectively managed tie problems usually occurred in applying OVA SVMs to multi-class classification.

A Box Office Type Classification and Prediction Model Based on Automated Machine Learning for Maximizing the Commercial Success of the Korean Film Industry (한국 영화의 산업의 흥행 극대화를 위한 AutoML 기반의 박스오피스 유형 분류 및 예측 모델)

  • Subeen Leem;Jihoon Moon;Seungmin Rho
    • Journal of Platform Technology
    • /
    • v.11 no.3
    • /
    • pp.45-55
    • /
    • 2023
  • This paper presents a model that supports decision-makers in the Korean film industry to maximize the success of online movies. To achieve this, we collected historical box office movies and clustered them into types to propose a model predicting each type's online box office performance. We considered various features to identify factors contributing to movie success and reduced feature dimensionality for computational efficiency. We systematically classified the movies into types and predicted each type's online box office performance while analyzing the contributing factors. We used automated machine learning (AutoML) techniques to automatically propose and select machine learning algorithms optimized for the problem, allowing for easy experimentation and selection of multiple algorithms. This approach is expected to provide a foundation for informed decision-making and contribute to better performance in the film industry.

  • PDF

Design and Implementation of a LSTM-based YouTube Malicious Comment Detection System (유튜브 악성 댓글 탐지를 위한 LSTM 기반 기계학습 시스템 설계 및 구현)

  • Kim, Jeongmin;Kook, Joongjin
    • Smart Media Journal
    • /
    • v.11 no.2
    • /
    • pp.18-24
    • /
    • 2022
  • Problems caused by malicious comments occur on many social media. In particular, YouTube, which has a strong character as a medium, is getting more and more harmful from malicious comments due to its easy accessibility using mobile devices. In this paper, we designed and implemented a YouTube malicious comment detection system to identify malicious comments in YouTube contents through LSTM-based natural language processing and to visually display the percentage of malicious comments, such commentors' nicknames and their frequency, and we evaluated the performance of the system. By using a dataset of about 50,000 comments, malicious comments could be detected with an accuracy of about 92%. Therefore, it is expected that this system can solve the social problems caused by malicious comments that many YouTubers faced by automatically generating malicious comments statistics.

A Study on the Analysis of Bus Machine Learning in Changwon City Using VIMS and DTG Data (VIMS와 DTG 데이터를 이용한 창원시 시내버스 머신러닝 분석 연구)

  • Park, Jiyang;Jeong, Jaehwan;Yoon, Jinsu;Kim, Sungchul;Kim, Jiyeon;Lee, Hosang;Ryu, Ikhui;Gwon, Yeongmun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.1
    • /
    • pp.26-31
    • /
    • 2022
  • Changwon City has the second highest accident rate with 79.6 according to the city bus accident rate. In fact, 250,000 people use the city bus a day in Changwon, The number of accidents is increasing gradually. In addition, a recent fire accident occurred in the engine room of a city bus (CNG) in Changwon, which has gradually expanded the public's anxiety. In the case of business vehicles, the government conducts inspections with a short inspection cycle for the purpose of periodic safety inspections, etc., but it is not in the monitoring stage. In the case of city buses, the operation records are monitored using Digital Tacho Graph (DTG). As such, driving records, methods, etc. are continuously monitored, but inspections are conducted every six months to ascertain the safety and performance of automobiles. It is difficult to identify real-time information on automobile safety. Therefore, in this study, individual automobile management solutions are presented through machine learning techniques of inspection results based on driving records or habits by linking DTG data and Vehicle Inspection Management System (VIMS) data for city buses in Changwon from 2019 to 2020.

A Study on Auto-Classification of Aviation Safety Data using NLP Algorithm (자연어처리 알고리즘을 이용한 위험기반 항공안전데이터 자동분류 방안 연구)

  • Sung-Hoon Yang;Young Choi;So-young Jung;Joo-hyun Ahn
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.528-535
    • /
    • 2022
  • Although the domestic aviation industry has made rapid progress with the development of aircraft manufacturing and transportation technologies, aviation safety accidents continue to occur. The supervisory agency classifies hazards and risks based on risk-based aviation safety data, identifies safety trends for each air transportation operator, and conducts pre-inspections to prevent event and accidents. However, the human classification of data described in natural language format results in different results depending on knowledge, experience, and propensity, and it takes a considerable amount of time to understand and classify the meaning of the content. Therefore, in this journal, the fine-tuned KoBERT model was machine-learned over 5,000 data to predict the classification value of new data, showing 79.2% accuracy. In addition, some of the same result prediction and failed data for similar events were errors caused by human.

A Study on the Applicability of Deep Learning Algorithm for Detection and Resolving of Occlusion Area (영상 폐색영역 검출 및 해결을 위한 딥러닝 알고리즘 적용 가능성 연구)

  • Bae, Kyoung-Ho;Park, Hong-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.305-313
    • /
    • 2019
  • Recently, spatial information is being constructed actively based on the images obtained by drones. Because occlusion areas occur due to buildings as well as many obstacles, such as trees, pedestrians, and banners in the urban areas, an efficient way to resolve the problem is necessary. Instead of the traditional way, which replaces the occlusion area with other images obtained at different positions, various models based on deep learning were examined and compared. A comparison of a type of feature descriptor, HOG, to the machine learning-based SVM, deep learning-based DNN, CNN, and RNN showed that the CNN is used broadly to detect and classify objects. Until now, many studies have focused on the development and application of models so that it is impossible to select an optimal model. On the other hand, the upgrade of a deep learning-based detection and classification technique is expected because many researchers have attempted to upgrade the accuracy of the model as well as reduce the computation time. In that case, the procedures for generating spatial information will be changed to detect the occlusion area and replace it with simulated images automatically, and the efficiency of time, cost, and workforce will also be improved.

Damage Detection and Classification System for Sewer Inspection using Convolutional Neural Networks based on Deep Learning (CNN을 이용한 딥러닝 기반 하수관 손상 탐지 분류 시스템)

  • Hassan, Syed Ibrahim;Dang, Lien-Minh;Im, Su-hyeon;Min, Kyung-bok;Nam, Jun-young;Moon, Hyeon-joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.451-457
    • /
    • 2018
  • We propose an automatic detection and classification system of sewer damage database based on artificial intelligence and deep learning. In order to optimize the performance, we implemented a robust system against various environmental variations such as illumination and shadow changes. In our proposed system, a crack detection and damage classification method using a deep learning based Convolutional Neural Network (CNN) is implemented. For optimal results, 9,941 CCTV images with $256{\times}256$ pixel resolution were used for machine learning on the damaged area based on the CNN model. As a result, the recognition rate of 98.76% was obtained. Total of 646 images of $720{\times}480$ pixel resolution were extracted from various sewage DB for performance evaluation. Proposed system presents the optimal recognition rate for the automatic detection and classification of damage in the sewer DB constructed in various environments.

A Study on Automatic Classification Model of Documents Based on Korean Standard Industrial Classification (한국표준산업분류를 기준으로 한 문서의 자동 분류 모델에 관한 연구)

  • Lee, Jae-Seong;Jun, Seung-Pyo;Yoo, Hyoung Sun
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.221-241
    • /
    • 2018
  • As we enter the knowledge society, the importance of information as a new form of capital is being emphasized. The importance of information classification is also increasing for efficient management of digital information produced exponentially. In this study, we tried to automatically classify and provide tailored information that can help companies decide to make technology commercialization. Therefore, we propose a method to classify information based on Korea Standard Industry Classification (KSIC), which indicates the business characteristics of enterprises. The classification of information or documents has been largely based on machine learning, but there is not enough training data categorized on the basis of KSIC. Therefore, this study applied the method of calculating similarity between documents. Specifically, a method and a model for presenting the most appropriate KSIC code are proposed by collecting explanatory texts of each code of KSIC and calculating the similarity with the classification object document using the vector space model. The IPC data were collected and classified by KSIC. And then verified the methodology by comparing it with the KSIC-IPC concordance table provided by the Korean Intellectual Property Office. As a result of the verification, the highest agreement was obtained when the LT method, which is a kind of TF-IDF calculation formula, was applied. At this time, the degree of match of the first rank matching KSIC was 53% and the cumulative match of the fifth ranking was 76%. Through this, it can be confirmed that KSIC classification of technology, industry, and market information that SMEs need more quantitatively and objectively is possible. In addition, it is considered that the methods and results provided in this study can be used as a basic data to help the qualitative judgment of experts in creating a linkage table between heterogeneous classification systems.

Development of an intelligent skin condition diagnosis information system based on social media

  • Kim, Hyung-Hoon;Ohk, Seung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.241-251
    • /
    • 2022
  • Diagnosis and management of customer's skin condition is an important essential function in the cosmetics and beauty industry. As the social media environment spreads and generalizes to all fields of society, the interaction of questions and answers to various and delicate concerns and requirements regarding the diagnosis and management of skin conditions is being actively dealt with in the social media community. However, since social media information is very diverse and atypical big data, an intelligent skin condition diagnosis system that combines appropriate skin condition information analysis and artificial intelligence technology is necessary. In this paper, we developed the skin condition diagnosis system SCDIS to intelligently diagnose and manage the skin condition of customers by processing the text analysis information of social media into learning data. In SCDIS, an artificial neural network model, AnnTFIDF, that automatically diagnoses skin condition types using artificial neural network technology, a deep learning machine learning method, was built up and used. The performance of the artificial neural network model AnnTFIDF was analyzed using test sample data, and the accuracy of the skin condition type diagnosis prediction value showed a high performance of about 95%. Through the experimental and performance analysis results of this paper, SCDIS can be evaluated as an intelligent tool that can be used efficiently in the skin condition analysis and diagnosis management process in the cosmetic and beauty industry. And this study can be used as a basic research to solve the new technology trend, customized cosmetics manufacturing and consumer-oriented beauty industry technology demand.