• Title/Summary/Keyword: 자동획득

Search Result 738, Processing Time 0.029 seconds

Effective Fingerprint Classification using Subsumed One-Vs-All Support Vector Machines and Naive Bayes Classifiers (포섭구조 일대다 지지벡터기계와 Naive Bayes 분류기를 이용한 효과적인 지문분류)

  • Hong, Jin-Hyuk;Min, Jun-Ki;Cho, Ung-Keun;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.10
    • /
    • pp.886-895
    • /
    • 2006
  • Fingerprint classification reduces the number of matches required in automated fingerprint identification systems by categorizing fingerprints into a predefined class. Support vector machines (SVMs), widely used in pattern classification, have produced a high accuracy rate when performing fingerprint classification. In order to effectively apply SVMs to multi-class fingerprint classification systems, we propose a novel method in which SVMs are generated with the one-vs-all (OVA) scheme and dynamically ordered with $na{\ddot{i}}ve$ Bayes classifiers. More specifically, it uses representative fingerprint features such as the FingerCode, singularities and pseudo ridges to train the OVA SVMs and $na{\ddot{i}}ve$ Bayes classifiers. The proposed method has been validated on the NIST-4 database and produced a classification accuracy of 90.8% for 5-class classification. Especially, it has effectively managed tie problems usually occurred in applying OVA SVMs to multi-class classification.

Fingerprint Classification using Multiple Decision Templates with SVM (SVM의 다중결정템플릿을 이용한 지문분류)

  • Min Jun-Ki;Hong Jin-Hyuk;Cho Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.11
    • /
    • pp.1136-1146
    • /
    • 2005
  • Fingerprint classification is useful in an automated fingerprint identification system (AFIS) to reduce the matching time by categorizing fingerprints. Based on Henry system that classifies fingerprints into S classes, various techniques such as neural networks and support vector machines (SVMs) have been widely used to classify fingerprints. Especially, SVMs of high classification performance have been actively investigated. Since the SVM is binary classifier, we propose a novel classifier-combination model, multiple decision templates (MuDTs), to classily fingerprints. The method extracts several clusters of different characteristics from samples of a class and constructs a suitable combination model to overcome the restriction of the single model, which may be subject to the ambiguous images. With the experimental results of the proposed on the FingerCodes extracted from NIST Database4 for the five-class and four-class problems, we have achieved a classification accuracy of $90.4\%\;and\;94.9\%\;with\;1.8\%$ rejection, respectively.

Simulation of Ladar Range Images based on Linear FM Signal Analysis (Linear FM 신호분석을 통한 Ladar Range 영상의 시뮬레이션)

  • Min, Seong-Hong;Kim, Seong-Joon;Lee, Im-Pyeong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.2
    • /
    • pp.87-95
    • /
    • 2008
  • Ladar (Laser Detection And Ranging, Lidar) is a sensor to acquire precise distances to the surfaces of target region using laser signals, which can be suitably applied to ATD (Automatic Target Detection) for guided missiles or aerial vehicles recently. It provides a range image in which each measured distance is expressed as the brightness of the corresponding pixel. Since the precise 3D models can be generated from the Ladar range image, more robust identification and recognition of the targets can be possible. If we simulate the data of Ladar sensor, we can efficiently use this simulator to design and develop Ladar sensors and systems and to develop the data processing algorithm. The purposes of this study are thus to simulate the signals of a Ladar sensor based on linear frequency modulation and to create range images from the simulated Ladar signals. We first simulated the laser signals of a Ladar using FM chirp modulator and then computed the distances from the sensor to a target using the FFT process of the simulated signals. Finally, we created the range image using the distances set.

  • PDF

Reliable Smoke Detection using Static and Dynamic Textures of Smoke Images (연기 영상의 정적 및 동적 텍스처를 이용한 강인한 연기 검출)

  • Kim, Jae-Min
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.2
    • /
    • pp.10-18
    • /
    • 2012
  • Automatic smoke detection systems using a surveillance camera requires a reliable smoke detection method. When an image sequence is captured from smoke spreading over in the air, not only has each smoke image frame a special texture, called static texture, but the difference between two smoke image frames also has a peculiar texture, called dynamic texture. Even though an object has a static texture similar to that of the smoke, its dynamic texture cannot be similar to that of the smoke if its movement differs from the diffraction action of the smoke. This paper presents a reliable smoke detection method using these two textures. The proposed method first detects change regions using accumulated frame difference, and then picks out smoke regions using Haralick features extracted from two textures.

A Study on a Diagnosis System for HSR Turnout Systems (I) (고속철도 분기기 시스템 진단 시스템에 관한 연구(I))

  • Kim, Youngseok;Yoon, Yeonjoo;Back, Inchul;Ryu, Youngtae;Han, Hyunsu;Hwang, Ankyu;Kang, Hyungseok;Lee, Jongwoo
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.2
    • /
    • pp.210-222
    • /
    • 2017
  • Railway turnout systems play a key role in railway systems that change train directions. The turnout systems are one of the weakest systems in railway systems, and consecutive maintenance is required. A turnout diagnostic system can automatically measure the turnout status and its deterioration. To diagnose the turnout systems, we follow conventional maintenance procedures and need to identify their physical characteristics to coincide the procedures and the characteristics. According to the physical characteristics, we should choose and install adequate sensors on the turnout systems to measure their physical characteristics. We studied the phenomenon of the turnout system responses for point moving and train running on the turnout systems. We installed sensors on the turnout system in a revenue line to measure the identified physical quantities and to reveal the robustness of the sensors under the turnout system environment.

An Automatic Learning of Adaptation Knowledge for Case-Based Reasoning (사례기반 추론을 위한 적응 지식의 자동 학습)

  • Lee, Jae-Pil;Jo, Gyeong-Dal;Kim, Gi-Tae
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.1
    • /
    • pp.96-106
    • /
    • 1999
  • Case-Base Reasoning(CBR) solves the new problems by reusing the solutions to previously solved problems. But, there are differences between previously known case and a new problems. To solve this problem Case-Based System have to adapt the solution of the case to suit a new situation. In current CBR systems, case adaptation is usually performed by rule-based method that use rules hand-coded by the system developer. So, CBR system designer faces knowledge acquisition bottleneck akin to those found in traditional expert system design. To solve this problem, in this thesis, we present an automatic learning method of case adaptation knowledge using case base, we use a method of comparing cases in the case base to learn adaptation knowledge. The system is tested in the domain for the decision of travel-price. The result shows accuracy improvement in comparison with case retrieval-only system.

  • PDF

Morphable Model to Interpolate Difference between Number of Pixels and Number of Vertices (픽셀 수와 정점들 간의 차이를 보완하는 Morphable 모델)

  • Ko, Bang-Hyun;Moon, Hyeon-Joon;Kim, Yong-Guk;Moon, Seung-Bin;Lee, Jong-Weon
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.3
    • /
    • pp.1-8
    • /
    • 2007
  • The images, which were acquired from various systems such as CCTV and Robot, include many human faces. Because of a rapid increase in visual data, we cannot process these manually; rather we need to do these automatically. Furthermore, companies require automatic security systems to protect their new technology. There are various options available to us, including face recognition, iris recognition and fingerprint recognition. Face recognition is preferable since it does not require direct contact. However, the standard 2-Dimensional method is limited, so Morphable Models may be recommended as an alternative. The original morphable model, made by MPI, contains a large quantity of data such as texture and geometry data. This paper presents a Geometrix-based morphable model designed to reduce this data capacity.

A Swine Management System for PLC baed on Integrated Image Processing Technique (통합 이미지 처리기법 기반의 PLF를 위한 Swine 관리 시스템)

  • Arellano, Guy;Cabacas, Regin;Balontong, Amem;Ra, In-Ho
    • Smart Media Journal
    • /
    • v.3 no.1
    • /
    • pp.16-21
    • /
    • 2014
  • The demand for food rises proportionally as population grows. To be able to achieve sustainable supply of livestock products, efficient farm management is a necessity. With the advancement in technology it also brought innovations that could be harness in order to achieve better productivity in animal production and agriculture. Precision Livestock Farming (PLF) is a budding concept of making use of smart sensors or available devices to automatically and continuously monitor and manage livestock production. With this concept, this paper introduces a swine management system that integrates image processing technique for weight monitoring. This system captures pig images using camera, evaluate and estimate the weight base on the captured image. It is comprised of Pig Module, Breeding Module, Health and Medication Module, Weighr Module, Data Analysis Module and Report Module to help swine farm administrators better understand the performance and situation of the swine farm. This paper aims to improve the management in both small and big livestock raisers.

The Change Detection from High-resolution Satellite Imagery Using Floating Window Method (이동창 방식에 의한 고해상도 위성영상에서의 변화탐지)

  • Im, Yeong-Jae;Ye, Cheol-Su;Kim, Gyeong-Ok
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.117-122
    • /
    • 2002
  • Change detection is a useful technology that can be applied to various fields, taking temporal change information with the comparison and analysis among multi-temporal satellite images. Especially, change detection that utilizes high-resolution satellite imagery can be implemented to extract useful change information for many purposes, such as the environmental inspection, the circumstantial analysis of disaster damage, the inspection of illegal building, and the military use, which cannot be achieved by lower middle-resolution satellite imagery. However, because of the special characteristics that result from high-resolution satellite imagery, it cannot use a pixel-based method that is used for low-resolution satellite imagery. Therefore, it must be used a feature-based algorithm based on the geographical and morphological feature. This paper presents the system that builds the change map by digitizing the boundary of the changed object. In this system, we can make the change map using manual or semi-automatic digitizing through the user interface implemented with a floating window that enables to detect the sign of the change, such as the construction or dismantlement, more efficiently.

  • PDF

Application of a Hydroinformatic System for Calibration of a Catchment Modelling System (강우-유출모형의 검정을 위한 수문정보시스템의 적용)

  • Choi, Kyung-Sook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.3
    • /
    • pp.129-138
    • /
    • 2003
  • A new methodology for selecting spatially variable model control parameter values through consideration of inference models within a Hydroinformatic system has been developed to overcome problems associated with determination of spatially variable control parameter values for both ungauged and gauged catchment. The adopted Hydroinformatic tools for determination of control parameter values were a GIS(Arc/Info) to handle spatial and non-spatial attribute information, the SWMM(stormwater management model) to simulate catchment response to hydrologic events, and lastly, L_BFGS_B(a limited memory quasi-Newton algorithm) to assist in the calibration process. As a result, high accuracy of control parameter estimation was obtained by considering the spatial variations of the control parameters based on landuse characteristics. Also, considerable time and effort necessary for estimating a large number of control parameters were reduced from the new calibration approach.

  • PDF