• Title/Summary/Keyword: 자동회귀모델

Search Result 55, Processing Time 0.025 seconds

A study on the difficulty adjustment of programming language multiple-choice problems using machine learning (머신러닝을 활용한 프로그래밍언어 객관식 문제의 난이도 조정에 대한 연구)

  • Kim, EunJung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.2
    • /
    • pp.11-24
    • /
    • 2022
  • For the questions asked for LMS-based online evaluation the professor directly set exam questions, or use the automatic question-taking method according to the level of difficulty using the question bank divided by category. Among them, it is important to manage the difficulty of questions in an objective and efficient way, above all, in the automatic question-taking method according to difficulty. Because the questions presented to the evaluators may be different. In this paper, we propose an difficulty re-adjustment algorithm that considers not only the correct rate of a problem but also the time taken to solve the problem. For this, a logistic regression classification algorithm was used of machine learning, and a reference threshold was set based on the predicted probability value of the learning model and used to readjust the difficulty of each item. As a result, it was confirmed that there were many changes in the difficulty of each item that depended only on the existing correct rate. Also, as a result of performing group evaluation using the adjustment difficulty problem, it was confirmed that the average score improved in most groups compared to the difficulty problem based on the percentage of correct answers.

AN EMPIRICAL STUDY ON THE KERAN'S MODEL (Keran의 모델에 관한 실증적 고찰)

  • Kim, Tae-Sik
    • The Korean Journal of Financial Management
    • /
    • v.1 no.1
    • /
    • pp.55-69
    • /
    • 1985
  • 1959년(年) 11월(月) St. Louis 연방은행 Review지(誌)에 발표된 통칭 St. Louis 방정식으로 불리는 Miehael W. Keran의 모형은 학계에 지대한 반향을 이르켰다. 동모형은 1919년에서 1969의 50년간의 자료를 토대로 재정정책 및 화폐정책을 대표하는 두 설명변수와 경제활동의 전반적지표로서 국민소득을 종속변수로하여 전자의 후자에 미치는 영향을 계량적으로 파악코저하는 회귀분석인데 만일 방정식이라는 접근방식이 구조적 특징이다. 본 연구는 1965년에서 1980년까지의 새로운 자료에 입각하여 동모형의 이론적 타당성을 비판적으로 검토하고, 또한 통계학적 신빙성을 제고(提高)할 수 있는 개선방안(改善方案)을 모색코저 시도(試圖)한 것이다. 우선 단일방정식(單一方程式) 접근(接近)의 문제점(問題點)인 종속변수의 EXOGENEITY를 시험하기 위(爲)한 소위 Reverse-Causation Argument를 재점검(再點檢)하였고, 이이서 동모형의 Specification을 면밀히 살펴왔다. 특히 이자율의 변동을 설명변수로 도입해서 동변수가 경제활동전반에 끼치는 영향을 추정함으로서 설명변수의 추가적 설정(說定)의 타당성여부를 검토하였다. Keran의 결과가 t, D-W 및 $R^2$ 등의 주요 통제치가 매우 미흡한 수준이였으므로 이들 통계치의 제고(提高)를 위해 Almond-lag 방식을 Cuchrane/Oreutt 기법(技法)과 결합해서 적용하여 Almond의 지연구조에 녹유(綠由)하는 자동상관(自動相關) 효과(效果)를 배제(排除)코저 하였다. 끝으로 본연구대상기간인 '65년에서 '80년간의 역사적 발전을 배경으로 동모형의 적용 결과를 재조명(再照明)함으로서 동모형의 타당성을 살펴봤다.

  • PDF

The Auto Regressive Parameter Estimation and Pattern Classification of EKS Signals for Automatic Diagnosis (심전도 신호의 자동분석을 위한 자기회귀모델 변수추정과 패턴분류)

  • 이윤선;윤형로
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.93-100
    • /
    • 1988
  • The Auto Regressive Parameter Estimation and Pattern Classification of EKG Signal for Automatic Diagnosis. This paper presents the results from pattern discriminant analysis of an AR (auto regressive) model parameter group, which represents the HRV (heart rate variability) that is being considered as time series data. HRV data was extracted using the correct R-point of the EKG wave that was A/D converted from the I/O port both by hardware and software functions. Data number (N) and optimal (P), which were used for analysis, were determined by using Burg's maximum entropy method and Akaike's Information Criteria test. The representative values were extracted from the distribution of the results. In turn, these values were used as the index for determining the range o( pattern discriminant analysis. By carrying out pattern discriminant analysis, the performance of clustering was checked, creating the text pattern, where the clustering was optimum. The analysis results showed first that the HRV data were considered sufficient to ensure the stationarity of the data; next, that the patern discrimimant analysis was able to discriminate even though the optimal order of each syndrome was dissimilar.

  • PDF

Optimum Design of Formed Tool for Die of Bearing Rubber Seal Using Design of Experiments (실험계획법에 의한 자동차용 러버실 금형가공을 위한 총형공구의 최적설계)

  • Lee, Li-Hai;Lim, Pyo;Lee, Hi-Koan;Yang, Gyun-Eui
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.47-53
    • /
    • 2007
  • A bearing is one of core parts in automobile. Rubber seal of the bearing is important to improve performance of bearing, formed by hot-press die of rubber seal for the intricate shape. In this study, formed tools are used to machine die of bearing rubber seal and the machining operation is classified into the several process of high precision. Design of experiments is used to optimize selection of the formed tools for the efficient machining of the hot-press die. The cutting force, tool wear and tool life are determined to characteristics. And, the clearance angle, the rake angle and the length cutting edge are considered as the major factors. Experiments are repeated to use one-way factorial design, and tool life is predicted by regression model.

A Study on Technology Trend of Power Semiconductor Packaging using Topic model (토픽모델을 이용한 전력반도체 패키징 기술 동향 연구)

  • Park, Keunseo;Choi, Gyunghyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.2
    • /
    • pp.53-58
    • /
    • 2020
  • Analysis of electric semiconductor packaging technology for electric vehicles was performed. Topic modeling using LDA technique was performed by collecting valid patents by deriving valid patents. It was classified into 20 topics, and the definition of technology was defined through extracted words for each topic. In order to analyze the trend of each topic, the trend of power semiconductor packaging technology was analyzed by deriving hot and cold topics by topic through regression analysis on frequency by year. The package structure technology according to the withstand voltage, the input/output-related control technology and the heat dissipation technology were derived as the hot topic technology, and the inductance reduction technology was derived as the cold topic technology.

A Method for Correcting Air-Pressure Data Collected by Mini-AWS (소형 자동기상관측장비(Mini-AWS) 기압자료 보정 기법)

  • Ha, Ji-Hun;Kim, Yong-Hyuk;Im, Hyo-Hyuc;Choi, Deokwhan;Lee, Yong Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.3
    • /
    • pp.182-189
    • /
    • 2016
  • For high accuracy of forecast using numerical weather prediction models, we need to get weather observation data that are large and high dense. Korea Meteorological Administration (KMA) mantains Automatic Weather Stations (AWSs) to get weather observation data, but their installation and maintenance costs are high. Mini-AWS is a very compact automatic weather station that can measure and record temperature, humidity, and pressure. In contrast to AWS, costs of Mini-AWS's installation and maintenance are low. It also has a little space restraints for installing. So it is easier than AWS to install mini-AWS on places where we want to get weather observation data. But we cannot use the data observed from Mini-AWSs directly, because it can be affected by surrounding. In this paper, we suggest a correcting method for using pressure data observed from Mini-AWS as weather observation data. We carried out preconditioning process on pressure data from Mini-AWS. Then they were corrected by using machine learning methods with the aim of adjusting to pressure data of the AWS closest to them. Our experimental results showed that corrected pressure data are in regulation and our correcting method using SVR showed very good performance.

The Effect of Daily Minimum Temperature of the Period from Dormancy Breaking to First Bloom on Apple Phenology (휴면타파부터 개화개시까지의 일 최저온도가 사과 생물계절에 미치는 영향)

  • Kyung-Bong Namkung;Sung-Chul Yun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.3
    • /
    • pp.208-217
    • /
    • 2023
  • Accurate estimation of dormancy breaking and first bloom dates is crucial for effective fire blight control by disease model such as Maryblyt in apple orchards. The duration from dormancy breaking to first bloom in apple trees was influenced by daily minimum temperatures during the dormant period. The purpose of this study is to investigate the relationship between minimum temperatures during this period and the time taken for flowering to commence. Webcam data from eight apple orchards, equipped by the National Institute of Horticultural and Herbal Science, were observed from 2019 to 2023 to determine the dates of starting bloom (B1). Additionally, the dormancy breaking dates for these eight sites were estimated using an apple chill day model, with a value of -100.5 DD, based on collected weather data. Two regressions were performed to analyze the relationships: the first regression between the number of days under 0℃ (X1) and the time from calculated dormancy breaking to observed first bloom (Y), resulting in Y = 0.87 × X1 + 40.76 with R2 = 0.84. The second regression examined the starting date of breaking dormancy (X2) and the duration from dormancy breaking to observed first bloom (Y), resulting in Y = -1.07 × X2 + 143.62 with R2 = 0.92. These findings suggest that apple anti-chill days are significantly affected by minimum temperatures during the period from dormancy breaking to flowering, indicating their importance in fire blight control measures.

유비쿼터스 컴퓨팅 황경에서 발생하는 에이전트간 충돌 해결 모델

  • 이건수;김민구
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2004.11a
    • /
    • pp.249-258
    • /
    • 2004
  • 오늘날 활발하게 이루어지고 있는 유비쿼터스 컴퓨팅 관련 기술 연구는 사용자가 시간과 장소에 구애받지 않고 네트워크에 접근해 다양한 컴퓨터 관련 서비스를 제공 받을 수 있는 방법에 초점을 맞추고 있다. 이 처럼 시간과 공간의 한계를 뛰어 넘은 네트워크로의 자유로운 접근은 일상 생활의 패러다임을 바꾸어 놓게 될 것이다. 유비쿼터스 컴퓨팅 기술을 통해 가장 큰 변화가 일어나는 분야는 일반 가정환경에서 일어나는 인텔리전트 홈 네트워크 (Intelligent Home Network) 라고 할 수 있다. 집에 들어오면, 자동으로 문을 열어주고, 불을 켜주며, 놓쳤던 TV 프로그램을 자동으로 녹화해 놓았다가 원하는 시간에 보여주고, 적당한 시간에 목욕물을 미리 받아준다. 또한 집밖으로 나가기 전, 일기예보에 따라 우산을 챙겨주고, 일정을 확인시켜주며 입고 나갈 옷을 골라줄 수도 있다. 이 모든 일들이 유비쿼터스 컴퓨팅 기술이 가져올 인텔리전트 홈 네트워크의 모습이다. 그러나, 모든 사용자에게 효과적인 서비스를 제공하기 위해서는 홈 네트워크 상의 자원 관리에서 일어날 수 있는 에이전트들간의 자원 접근 권한 충돌을 효율적으로 방지할 수 있는 기술이 필요하다. 유비쿼터스 컴퓨팅 환경에서 자원관리 특성은 점유의 연속성, 자원 사이의 연관성, 그리고 자원과 사용자 사 사이의 연계성의 3 가지 특성을 지니고 있다. 본 논문에서는 유비쿼터스 컴퓨팅 환경에서 일어날 수 있는 자원 충돌 상황을 효율적으로 처리하기 위한 자원 협상 방법을 제안한다. 본 방법은 자원 관리 특성을 바탕으로 시간논리에 기반을 둔 자원 선점과 분배 규칙으로 구성된다.트 시스템은 b-Cart를 기반으로 할 것으로 예측할 수 있다.타났다. 또한, 스네이크의 초기 제어점을 얼굴은 44개, 눈은 16개, 입은 24개로 지정하여 MER추출에 성공한 영상에 대해 스네이크 알고리즘을 수행한 결과, 추출된 영역의 오차율은 각각 2.2%, 2.6%, 2.5%로 나타났다.해서 Template-based reasoning 예를 보인다 본 방법론은 검색노력을 줄이고, 검색에 있어 Feasibility와 Admissibility를 보장한다.매김할 수 있는 중요한 계기가 될 것이다.재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data b

  • PDF

Detection of Music Mood for Context-aware Music Recommendation (상황인지 음악추천을 위한 음악 분위기 검출)

  • Lee, Jong-In;Yeo, Dong-Gyu;Kim, Byeong-Man
    • The KIPS Transactions:PartB
    • /
    • v.17B no.4
    • /
    • pp.263-274
    • /
    • 2010
  • To provide context-aware music recommendation service, first of all, we need to catch music mood that a user prefers depending on his situation or context. Among various music characteristics, music mood has a close relation with people‘s emotion. Based on this relationship, some researchers have studied on music mood detection, where they manually select a representative segment of music and classify its mood. Although such approaches show good performance on music mood classification, it's difficult to apply them to new music due to the manual intervention. Moreover, it is more difficult to detect music mood because the mood usually varies with time. To cope with these problems, this paper presents an automatic method to classify the music mood. First, a whole music is segmented into several groups that have similar characteristics by structural information. Then, the mood of each segments is detected, where each individual's preference on mood is modelled by regression based on Thayer's two-dimensional mood model. Experimental results show that the proposed method achieves 80% or higher accuracy.

A Study on the Spatial Distribution Characteristic of Urban Surface Temperature using Remotely Sensed Data and GIS (원격탐사자료와 GIS를 활용한 도시 표면온도의 공간적 분포특성에 관한 연구)

  • Jo, Myung-Hee;Lee, Kwang-Jae;Kim, Woon-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.1
    • /
    • pp.57-66
    • /
    • 2001
  • This study used four theoretical models, such as two-point linear model, linear regression model, quadratic regression model and cubic regression model which are presented from The Ministry of Science and Technology, for extraction of urban surface temperature from Landsat TM band 6 image. Through correlation and regression analysis between result of four models and AWS(automatic weather station) observation data, this study could verify spatial distribution characteristic of urban surface temperature using GIS spatial analysis method. The result of analysis for surface temperature by landcover showed that the urban and the barren land belonged to the highest surface temperature class. And there was also -0.85 correlation in the result of correlation analysis between surface temperature and NDVI. In this result, the meteorological environmental characteristics wuld be regarded as one of the important factor in urban planning.

  • PDF