• Title/Summary/Keyword: 자동화 온실

Search Result 65, Processing Time 0.025 seconds

Fundamental Studies for the Automatic Control System in the Greenhouse Using Microcomputer(II) -A Development of a Controller for an Automatic Control System- (마이크로컴퓨터에 의한 시설재배의 자동화에 관한 기초연구(II) -자동화 시스템의 종합제어기 개발-)

  • 김진현;김철수
    • Journal of Biosystems Engineering
    • /
    • v.20 no.1
    • /
    • pp.73-86
    • /
    • 1995
  • The automatic control system in the greenhouse have to be developed to the direction of considering various factors the variables such as condition of the cultivation and greenhouse, the properties and types of products. Therefore, it is more important to set up variables appropriately than the problems of automatic control system itself, and the automatic control system which satisfy these problems should be simplified in the aspect of operation. In addition, even the individual automations are not perfect yet, so more studies are required for the development of comprehensive automatic system in korea. This study was carried out to automatize environment control systems for greenhouse, especially from most intensive labor requiring parts such as watering, irrigating liquefied fertilizer, spraying chemicals, mixing and ventilation system, etc. The results are summarized as follows. 1. Control type tensiometer was expected to be desirable in the automation of watering system, therefore, a new tensiometer was designed and developed through this study. 2. The chemical spraying system developed through this study was found to be excellent in the aspect of operation. 3. When pulse type water discharge meter was used in the mixing of liquefied fertilizer and chemical solution, the error of mixing were range $\pm$0.1~0.15%. 4. The water level switch of electrod type used for controlling water level was found to be affective in both control performance and operation cost. 5. The water and level control system can be omitted if each tank size are standardized in accordance with greenhouse size, therefore, the installation cost might be significantly reduced. 6. The developed general controller was excellent in hardware parts, but still remained to be improved in software parts.

  • PDF

Development of an Economic Material Selection Model for G-SEED Certification (녹색건축(G-SEED) 인증을 위한 경제적 자재선정 모델 개발)

  • Jeon, Byung-Ju;Kim, Byung-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.613-622
    • /
    • 2020
  • The South Korean government plans for a 37 % reduction in CO2 emissions against business as usual by 2030. Subsequently, the Ministry of Land, Infrastructure and Transport declared a 26.9 % reduction target in greenhouse gas emissions from buildings by 2020 and established the Green Standard for Energy and Environmental Design (G-SEED) to help improve the environmental performance of buildings. Construction companies often work with consulting firms to prepare for G-SEED certification. In the process, owing to inefficient data sharing and work connections, it is difficult to achieve economic efficiency and obtain certification. The objective of this study was to develop an economic model to assist contractors in achieving the required G-SEED scores for materials and resources. To do this, we automated the process for material comparison and selection on the basis of an analysis of actual consulting data, and developed a model that selects material alternatives that can meet the required scores at a minimum cost. Information on materials is input by applying a genetic algorithm to the optimization of alternatives. When the model was applied to actual data, the construction cost could be lowered by 79.3 % compared with existing methods. The economical material selection model is expected to not only reduce construction costs for owners desiring G-SEED certification but also shorten the project design time.

Automatic Classification by Land Use Category of National Level LULUCF Sector using Deep Learning Model (딥러닝모델을 이용한 국가수준 LULUCF 분야 토지이용 범주별 자동화 분류)

  • Park, Jeong Mook;Sim, Woo Dam;Lee, Jung Soo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1053-1065
    • /
    • 2019
  • Land use statistics calculation is very informative data as the activity data for calculating exact carbon absorption and emission in post-2020. To effective interpretation by land use category, This study classify automatically image interpretation by land use category applying forest aerial photography (FAP) to deep learning model and calculate national unit statistics. Dataset (DS) applied deep learning is divided into training dataset (training DS) and test dataset (test DS) by extracting image of FAP based national forest resource inventory permanent sample plot location. Training DS give label to image by definition of land use category and learn and verify deep learning model. When verified deep learning model, training accuracy of model is highest at epoch 1,500 with about 89%. As a result of applying the trained deep learning model to test DS, interpretation classification accuracy of image label was about 90%. When the estimating area of classification by category using sampling method and compare to national statistics, consistency also very high, so it judged that it is enough to be used for activity data of national GHG (Greenhouse Gas) inventory report of LULUCF sector in the future.

The Smart Outdoor Cultivation System using Internet of Things (사물인터넷을 이용한 지능형 노지 농작물 관리 시스템 개발)

  • Youm, Sungkwan;Hong, SungKwang;Koh, Wan-Ki
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.7
    • /
    • pp.63-68
    • /
    • 2018
  • Research on smart farms centering on greenhouse cultivation is actively under way due to the decrease in agriculture population and aging, but in the case of vegetables such as vegetables, outdoor cultivation is 70%. Therefore, there is a need to improve productivity and prevent soil contamination by automating, cultivating, and intelligentizing the outdoor cultivation of agriculture crops. In this paper, we show the case of establishing a outdoor production system using the Internet of things and define the environmental variables in the outdoor production system. By measuring soil temperature, water content, electrical conductivity and acidity through sensors, LoRa communication module transmits the information to the outdoor production system. The outdoor production system controls the amount of fertilizer and the volume of water based on this sensor data. We have developed a system that manages a wide range of crops using LoRa technology, which is a suitable communication method for cultivating crops, and manages production volume and sales performance.

The Research of Interworking System for Closed Plant Factories (식물공장을 위한 인터워킹 서비스 시스템에 대한 연구)

  • Lee, Myeongbae;Baek, Miran;Park, Jangwoo;Cho, Yongyun;Shin, Changsun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.91-97
    • /
    • 2018
  • The plant factory represents one of the future agricultural systems into which ubiquitous information technology (U-IT) is incorporated, including sensor networking, and helps minimize the influence of external experimental factors that constrain the use of existing greenhouse cultivation techniques. A plant factory's automated cultivation system does not merely provide convenience for crop cultivation, but also expandability as a platform that helps build a knowledge database based on its acquired information and develop education and other application services using the database. For the expansion of plant factory services, this study designed a plant factory interworking service (PFIS) which allows plant factories to share crop growth-related information efficiently among them and performed a test on the service and its implementation.

The agricultural production forecasting method in protected horticulture using artificial neural networks (인공신경망을 이용한 시설원예 농산물 생산량 예측 방안)

  • Min, J.H.;Huh, M.Y.;Park, J.Y.
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.485-488
    • /
    • 2016
  • The level of domestic greenhouse complex environmental control technology is a hardware-oriented automation steps that mechanically control the environments of greenhouse, such as temperature, humidity and $CO_2$ through the technology of cultivation and consulting experts. This automation brings simple effects such as labor saving. However, in order to substantially improve the output and quality of agricultural products, it is essential to track the growth and physiological condition of the plant and accordingly control the environments of greenhouse through a software-based complex environmental control technology for controlling the optimum environment in real time. Therefore, this paper is a part of general methods on the greenhouse complex environmental control technology. and presents a horticulture production forecasting methods using artificial neural networks through the analysis of big data systems of smart farm performed in our country and artificial neural network technology trends.

  • PDF

A Benchmark of Hardware Acceleration Technology for Real-time Simulation in Smart Farm (CUDA vs OpenCL) (스마트 시설환경 실시간 시뮬레이션을 위한 하드웨어 가속 기술 분석)

  • Min, Jae-Ki;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.160-160
    • /
    • 2017
  • 자동화 기술을 통한 한국형 스마트팜의 발전이 비약적으로 이루어지고 있는 가운데 무인화를 위한 지능적인 스마트 시설환경 관찰 및 분석에 대한 요구가 점점 증가 하고 있다. 스마트 시설환경에서 취득 가능한 시계열 데이터는 온도, 습도, 조도, CO2, 토양 수분, 환기량 등 다양하다. 시스템의 경계가 명확함에도 해당 속성의 특성상 타임도메인과 공간도메인 상에서 정확한 추정 또는 예측이 난해하다. 시설 환경에 접목이 증가하고 있는 지능형 관리 기술 구현을 위해선 시계열 공간 데이터에 대한 신속하고 정확한 정량화 기술이 필수적이라 할 수 있다. 이러한 기술적인 요구사항을 해결하고자 시도되는 다양한 방법 중에서 공간 분해능 향상을 위한 다지점 계측 메트릭스를 실험적으로 구성하였다. $50m{\times}100m$의 단면적인 연동 딸기 온실을 대상으로 $3{\times}3{\times}3$의 3차원 환경 인자 계측 매트릭스를 설치하였다. 1 Hz의 주기로 4가지 환경인자(온도, 습도, 조도, CO2)를 계측하였으며, 계측 하는 시점과 동시에 병렬적으로 공간통계법을 이용하여 미지의 지점에 대한 환경 인자들을 실시간으로 추정하였다. 선행적으로 50 cm 공간 분해능에 대응하기 위하여 Kriging interpolation법을 횡단면에 대하여 분석한 후 다시 종단면에 대하여 분석하였다. 3 Ghz에 해당하는 연산 능력을 보유한 컴퓨터에서 1초 동안 획득한 데이터에 대한 분석을 마치는데 소요되는 시간이 15초 내외로 나타났다. 이는 해당 알고리즘의 매우 높은 시간 복잡도(Order of $O=O^3$)에 기인하는 것으로 다양한 시설 환경의 관리 방법론에 적절히 대응하기에 한계가 있다 할 수 있다. 실시간으로 시간 복잡도가 높은 연산을 수행하기 위한 기술적인 과제를 해결하고자, 근래에 관심이 증가하고 있는 NVIDIA 사에서 제공하는 CUDA 엔진과 Apple사의 제안을 시작으로 하여 공개 소프트웨어 개발 컨소시엄인 크로노스 그룹에서 제공하는 OpenCL 엔진을 비교 분석하였다. CUDA 엔진은 GPU(Graphics Processing Unit)에서 정보 분석 프로그램의 연산 집약적인 부분만을 담당하여 신속한 결과를 산출할 수 있는 라이브러리이며 해당 하드웨어를 구비하였을 때 사용이 가능하다. 반면, OpenCL은 CUDA 엔진이 특정 하드웨어에서 구동이 되는 한계를 극복하고자 하드웨어에 비의존적인 라이브러리를 제공하는 것이 다르며 클러스터링 기술과 연계를 통해 낮은 하드웨어 성능으로 인한 단점을 극복하고자 하였다. 본 연구에서는 CUDA 8.0(https://developer.nvidia.com/cuda-downloads)버전과 Pascal Titan X(NVIDIA, CA, USA)를 사용한 방법과 OpenCL 1.2(https://www.khronos.org/opencl/)버전과 Samsung Exynos5422 칩을 장착한 ODROID-XU4(Hardkernel, AnYang, Korea)를 사용한 방법을 비교 분석하였다. 50 cm의 공간 분해능에 대응하기 위한 4차원 행렬($100{\times}200{\times}5{\times}4$)에 대하여 정수 지수화를 위한 Quantization을 거쳐 CUDA 엔진과 OpenCL 엔진을 적용한 비교한 결과, CUDA 엔진은 1초 내외, OpenCL 엔진의 경우 5초 내외의 연산 속도를 보였다. CUDA 엔진의 경우 비용측면에서 약 10배, 전력 소모 측면에서 20배 이상 소요되었다. 따라서 우선적으로 OpenCL 엔진 기반 하드웨어 가속 기술 최적화 연구를 통해 스마트 시설환경 실시간 시뮬레이션 기술 도입을 위한 기술적 과제를 풀어갈 것이다.

  • PDF

A Development of Automation system and a way to use Solar Energy System Efficiently in Greenhouse(2) - Study on improvement of growth and yield of a cucumber in soil heating - (시설원예 태양열 시스템의 효율적 이용과 자동화 장치개발(2) -지중가온에 의한 오이 생육 및 수량성 향상에 관한 연구-)

  • 김진현;오중열;구건효;김태욱
    • Journal of Bio-Environment Control
    • /
    • v.7 no.1
    • /
    • pp.25-33
    • /
    • 1998
  • Root zone temperature have influenced on protected cultivation in winter season. Especially root zone temperature is acted on limiting factor in crop cultivation. This study was conducted to obtain optimum temperature of root zone in Protected cultivation Root zone was warmed by heated water($28^{\circ}C$) flowing through the PPC pipe(${\phi}15$) buried depth 40 cm. And the flowing water was heated by solar system. Minimum air temperature during night time was set at $14^{\circ}C$ and maximum air temperature during day time was set at $28~30^{\circ}C$ the growing period of cucumber was from Nov. 6, 1996 to Jan. 30, 1997. The results are summarized as follows. 1. Average soil temperature at 15~20 cm depth was $22^{\circ}C$ at warming plots, $17~18^{\circ}C$ at non-warming plots 2. Early growth in leaf length, stem diameter, number of leaves and leaf area for 30 days after planting were accelerated by root zone warming. Especially, the grawing rate of soil warming plots was higher 27% in leaf length, 51% in leaf number, 150% in leaf area than non-warming Plots. Above-ground and underground part of warming plots was higher 117%, 56% than non-warming plots. 3. In total yield analysis, number of fruits were 614 in soil warming and 313 in non-warming plots. In the result, total yield of soil warming plots was increased with 196% than non-warming plots. 3. In total yield analysis. number of fruits were 614 in soil warming and 313 in non-warming plots. In the result. total yield of soil warming plots was increased with 196% than non-warming plots.

  • PDF

Studies on the Rooting Ability of Cutting in Elder Berry(Sambucus canadiensis) (황금(黃金)포도나무(Elder berry)의 삽목시험(揷木試驗))

  • Park, Kyo Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.40 no.1
    • /
    • pp.43-50
    • /
    • 1978
  • The elder berry was known to the rich in natural food colour resources and used in as for making wine, confectionary, perfumes, natural food colour, making elder berry juice, jelly, jam and medicinal properties or oils. In the present study, wish was to find the effect of various factors on the success of the vegetative propagation of elder berry by means cutting in the exposed field and green house was carried out and those obtained results can be summarized as follows. 1. Cuttings with dormant cutting stocs in the polyethylen house with heating and water mist spray resulting 100 percent survival. And temperature and the relative humidity in which fraim during the cutting season were around $20{\sim}25^{\circ}C$ and 70-90% respectively and in case as more significant other of the 1% Level. 2. With five varieties tested, resulting 93.8 percent survival, The F. value is not significant. 3. With four organs of cutting stock tested resulting 57.5 percent survival on the cuttings with two knodes of dormant cutting stock served as better cutting stock than others. The F. value is more significantly 1% Level. 4. Dormand bud served as possible cutting stock was found to be 17.66 survival percentage. 5. Both earlier and later stage of germinated Leaves with soft wood cutting stock poor cuttings, and the degree of development of 15th June cutting stock was optimum stage on the principal factor governing the success of cutting in the soft wood cutting showing 54% survival. The F. value is more 1% Level significant.

  • PDF

Development of Multi-functional Tele-operative Modular Robotic System For Watermelon Cultivation in Greenhouse

  • H. Hwang;Kim, C. S.;Park, D. Y.
    • Journal of Biosystems Engineering
    • /
    • v.28 no.6
    • /
    • pp.517-524
    • /
    • 2003
  • There have been worldwide research and development efforts to automate various processes of bio-production and those efforts will be expanded with priority given to tasks which require high intensive labor or produce high value-added product and tasks under hostile environment. In the field of bio-production capabilities of the versatility and robustness of automated system have been major bottlenecks along with economical efficiency. This paper introduces a new concept of automation based on tole-operation, which can provide solutions to overcome inherent difficulties in automating bio-production processes. Operator(farmer), computer, and automatic machinery share their roles utilizing their maximum merits to accomplish given tasks successfully. Among processes of greenhouse watermelon cultivation tasks such as pruning, watering, pesticide application, and harvest with loading were chosen based on the required labor intensiveness and functional similarities to realize the proposed concept. The developed system was composed of 5 major hardware modules such as wireless remote monitoring and task control module, wireless remote image acquisition and data transmission module, gantry system equipped with 4 d.o.f. Cartesian type robotic manipulator, exchangeable modular type end-effectors, and guided watermelon loading and storage module. The system was operated through the graphic user interface using touch screen monitor and wireless data communication among operator, computer, and machine. The proposed system showed practical and feasible way of automation in the field of volatile bio-production process.