• Title/Summary/Keyword: 자동화 시스템

Search Result 4,326, Processing Time 0.044 seconds

A Study on the Establishment of Comparison System between the Statement of Military Reports and Related Laws (군(軍) 보고서 등장 문장과 관련 법령 간 비교 시스템 구축 방안 연구)

  • Jung, Jiin;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.109-125
    • /
    • 2020
  • The Ministry of National Defense is pushing for the Defense Acquisition Program to build strong defense capabilities, and it spends more than 10 trillion won annually on defense improvement. As the Defense Acquisition Program is directly related to the security of the nation as well as the lives and property of the people, it must be carried out very transparently and efficiently by experts. However, the excessive diversification of laws and regulations related to the Defense Acquisition Program has made it challenging for many working-level officials to carry out the Defense Acquisition Program smoothly. It is even known that many people realize that there are related regulations that they were unaware of until they push ahead with their work. In addition, the statutory statements related to the Defense Acquisition Program have the tendency to cause serious issues even if only a single expression is wrong within the sentence. Despite this, efforts to establish a sentence comparison system to correct this issue in real time have been minimal. Therefore, this paper tries to propose a "Comparison System between the Statement of Military Reports and Related Laws" implementation plan that uses the Siamese Network-based artificial neural network, a model in the field of natural language processing (NLP), to observe the similarity between sentences that are likely to appear in the Defense Acquisition Program related documents and those from related statutory provisions to determine and classify the risk of illegality and to make users aware of the consequences. Various artificial neural network models (Bi-LSTM, Self-Attention, D_Bi-LSTM) were studied using 3,442 pairs of "Original Sentence"(described in actual statutes) and "Edited Sentence"(edited sentences derived from "Original Sentence"). Among many Defense Acquisition Program related statutes, DEFENSE ACQUISITION PROGRAM ACT, ENFORCEMENT RULE OF THE DEFENSE ACQUISITION PROGRAM ACT, and ENFORCEMENT DECREE OF THE DEFENSE ACQUISITION PROGRAM ACT were selected. Furthermore, "Original Sentence" has the 83 provisions that actually appear in the Act. "Original Sentence" has the main 83 clauses most accessible to working-level officials in their work. "Edited Sentence" is comprised of 30 to 50 similar sentences that are likely to appear modified in the county report for each clause("Original Sentence"). During the creation of the edited sentences, the original sentences were modified using 12 certain rules, and these sentences were produced in proportion to the number of such rules, as it was the case for the original sentences. After conducting 1 : 1 sentence similarity performance evaluation experiments, it was possible to classify each "Edited Sentence" as legal or illegal with considerable accuracy. In addition, the "Edited Sentence" dataset used to train the neural network models contains a variety of actual statutory statements("Original Sentence"), which are characterized by the 12 rules. On the other hand, the models are not able to effectively classify other sentences, which appear in actual military reports, when only the "Original Sentence" and "Edited Sentence" dataset have been fed to them. The dataset is not ample enough for the model to recognize other incoming new sentences. Hence, the performance of the model was reassessed by writing an additional 120 new sentences that have better resemblance to those in the actual military report and still have association with the original sentences. Thereafter, we were able to check that the models' performances surpassed a certain level even when they were trained merely with "Original Sentence" and "Edited Sentence" data. If sufficient model learning is achieved through the improvement and expansion of the full set of learning data with the addition of the actual report appearance sentences, the models will be able to better classify other sentences coming from military reports as legal or illegal. Based on the experimental results, this study confirms the possibility and value of building "Real-Time Automated Comparison System Between Military Documents and Related Laws". The research conducted in this experiment can verify which specific clause, of several that appear in related law clause is most similar to the sentence that appears in the Defense Acquisition Program-related military reports. This helps determine whether the contents in the military report sentences are at the risk of illegality when they are compared with those in the law clauses.

A Study on Ontology and Topic Modeling-based Multi-dimensional Knowledge Map Services (온톨로지와 토픽모델링 기반 다차원 연계 지식맵 서비스 연구)

  • Jeong, Hanjo
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.79-92
    • /
    • 2015
  • Knowledge map is widely used to represent knowledge in many domains. This paper presents a method of integrating the national R&D data and assists of users to navigate the integrated data via using a knowledge map service. The knowledge map service is built by using a lightweight ontology and a topic modeling method. The national R&D data is integrated with the research project as its center, i.e., the other R&D data such as research papers, patents, and reports are connected with the research project as its outputs. The lightweight ontology is used to represent the simple relationships between the integrated data such as project-outputs relationships, document-author relationships, and document-topic relationships. Knowledge map enables us to infer further relationships such as co-author and co-topic relationships. To extract the relationships between the integrated data, a Relational Data-to-Triples transformer is implemented. Also, a topic modeling approach is introduced to extract the document-topic relationships. A triple store is used to manage and process the ontology data while preserving the network characteristics of knowledge map service. Knowledge map can be divided into two types: one is a knowledge map used in the area of knowledge management to store, manage and process the organizations' data as knowledge, the other is a knowledge map for analyzing and representing knowledge extracted from the science & technology documents. This research focuses on the latter one. In this research, a knowledge map service is introduced for integrating the national R&D data obtained from National Digital Science Library (NDSL) and National Science & Technology Information Service (NTIS), which are two major repository and service of national R&D data servicing in Korea. A lightweight ontology is used to design and build a knowledge map. Using the lightweight ontology enables us to represent and process knowledge as a simple network and it fits in with the knowledge navigation and visualization characteristics of the knowledge map. The lightweight ontology is used to represent the entities and their relationships in the knowledge maps, and an ontology repository is created to store and process the ontology. In the ontologies, researchers are implicitly connected by the national R&D data as the author relationships and the performer relationships. A knowledge map for displaying researchers' network is created, and the researchers' network is created by the co-authoring relationships of the national R&D documents and the co-participation relationships of the national R&D projects. To sum up, a knowledge map-service system based on topic modeling and ontology is introduced for processing knowledge about the national R&D data such as research projects, papers, patent, project reports, and Global Trends Briefing (GTB) data. The system has goals 1) to integrate the national R&D data obtained from NDSL and NTIS, 2) to provide a semantic & topic based information search on the integrated data, and 3) to provide a knowledge map services based on the semantic analysis and knowledge processing. The S&T information such as research papers, research reports, patents and GTB are daily updated from NDSL, and the R&D projects information including their participants and output information are updated from the NTIS. The S&T information and the national R&D information are obtained and integrated to the integrated database. Knowledge base is constructed by transforming the relational data into triples referencing R&D ontology. In addition, a topic modeling method is employed to extract the relationships between the S&T documents and topic keyword/s representing the documents. The topic modeling approach enables us to extract the relationships and topic keyword/s based on the semantics, not based on the simple keyword/s. Lastly, we show an experiment on the construction of the integrated knowledge base using the lightweight ontology and topic modeling, and the knowledge map services created based on the knowledge base are also introduced.

A Study on the Impact of Artificial Intelligence on Decision Making : Focusing on Human-AI Collaboration and Decision-Maker's Personality Trait (인공지능이 의사결정에 미치는 영향에 관한 연구 : 인간과 인공지능의 협업 및 의사결정자의 성격 특성을 중심으로)

  • Lee, JeongSeon;Suh, Bomil;Kwon, YoungOk
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.231-252
    • /
    • 2021
  • Artificial intelligence (AI) is a key technology that will change the future the most. It affects the industry as a whole and daily life in various ways. As data availability increases, artificial intelligence finds an optimal solution and infers/predicts through self-learning. Research and investment related to automation that discovers and solves problems on its own are ongoing continuously. Automation of artificial intelligence has benefits such as cost reduction, minimization of human intervention and the difference of human capability. However, there are side effects, such as limiting the artificial intelligence's autonomy and erroneous results due to algorithmic bias. In the labor market, it raises the fear of job replacement. Prior studies on the utilization of artificial intelligence have shown that individuals do not necessarily use the information (or advice) it provides. Algorithm error is more sensitive than human error; so, people avoid algorithms after seeing errors, which is called "algorithm aversion." Recently, artificial intelligence has begun to be understood from the perspective of the augmentation of human intelligence. We have started to be interested in Human-AI collaboration rather than AI alone without human. A study of 1500 companies in various industries found that human-AI collaboration outperformed AI alone. In the medicine area, pathologist-deep learning collaboration dropped the pathologist cancer diagnosis error rate by 85%. Leading AI companies, such as IBM and Microsoft, are starting to adopt the direction of AI as augmented intelligence. Human-AI collaboration is emphasized in the decision-making process, because artificial intelligence is superior in analysis ability based on information. Intuition is a unique human capability so that human-AI collaboration can make optimal decisions. In an environment where change is getting faster and uncertainty increases, the need for artificial intelligence in decision-making will increase. In addition, active discussions are expected on approaches that utilize artificial intelligence for rational decision-making. This study investigates the impact of artificial intelligence on decision-making focuses on human-AI collaboration and the interaction between the decision maker personal traits and advisor type. The advisors were classified into three types: human, artificial intelligence, and human-AI collaboration. We investigated perceived usefulness of advice and the utilization of advice in decision making and whether the decision-maker's personal traits are influencing factors. Three hundred and eleven adult male and female experimenters conducted a task that predicts the age of faces in photos and the results showed that the advisor type does not directly affect the utilization of advice. The decision-maker utilizes it only when they believed advice can improve prediction performance. In the case of human-AI collaboration, decision-makers higher evaluated the perceived usefulness of advice, regardless of the decision maker's personal traits and the advice was more actively utilized. If the type of advisor was artificial intelligence alone, decision-makers who scored high in conscientiousness, high in extroversion, or low in neuroticism, high evaluated the perceived usefulness of the advice so they utilized advice actively. This study has academic significance in that it focuses on human-AI collaboration that the recent growing interest in artificial intelligence roles. It has expanded the relevant research area by considering the role of artificial intelligence as an advisor of decision-making and judgment research, and in aspects of practical significance, suggested views that companies should consider in order to enhance AI capability. To improve the effectiveness of AI-based systems, companies not only must introduce high-performance systems, but also need employees who properly understand digital information presented by AI, and can add non-digital information to make decisions. Moreover, to increase utilization in AI-based systems, task-oriented competencies, such as analytical skills and information technology capabilities, are important. in addition, it is expected that greater performance will be achieved if employee's personal traits are considered.

A Study on the Research Trends in Library & Information Science in Korea using Topic Modeling (토픽모델링을 활용한 국내 문헌정보학 연구동향 분석)

  • Park, Ja-Hyun;Song, Min
    • Journal of the Korean Society for information Management
    • /
    • v.30 no.1
    • /
    • pp.7-32
    • /
    • 2013
  • The goal of the present study is to identify the topic trend in the field of library and information science in Korea. To this end, we collected titles and s of the papers published in four major journals such as Journal of the Korean Society for information Management, Journal of the Korean Society for Library and Information Science, Journal of Korean Library and Information Science Society, and Journal of the Korean BIBLIA Society for library and Information Science during 1970 and 2012. After that, we applied the well-received topic modeling technique, Latent Dirichlet Allocation(LDA), to the collected data sets. The research findings of the study are as follows: 1) Comparison of the extracted topics by LDA with the subject headings of library and information science shows that there are several distinct sub-research domains strongly tied with the field. Those include library and society in the domain of "introduction to library and information science," professionalism, library and information policy in the domain of "library system," library evaluation in the domain of "library management," collection development and management, information service in the domain of "library service," services by library type, user training/information literacy, service evaluation, classification/cataloging/meta-data in the domain of "document organization," bibliometrics/digital libraries/user study/internet/expert system/information retrieval/information system in the domain of "information science," antique documents in the domain of "bibliography," books/publications in the domain of "publication," and archival study. The results indicate that among these sub-domains, information science and library services are two most focused domains. Second, we observe that there is the growing trend in the research topics such as service and evaluation by library type, internet, and meta-data, but the research topics such as book, classification, and cataloging reveal the declining trend. Third, analysis by journal show that in Journal of the Korean Society for information Management, information science related topics appear more frequently than library science related topics whereas library science related topics are more popular in the other three journals studied in this paper.

A Study on the Development of a Home Mess-Cleanup Robot Using an RFID Tag-Floor (RFID 환경을 이용한 홈 메스클린업 로봇 개발에 관한 연구)

  • Kim, Seung-Woo;Kim, Sang-Dae;Kim, Byung-Ho;Kim, Hong-Rae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.508-516
    • /
    • 2010
  • An autonomous and automatic home mess-cleanup robot is newly developed in this paper. Thus far, vacuum-cleaners have lightened the burden of household chores but the operational labor that vacuum-cleaners entail has been very severe. Recently, a cleaning robot was commercialized to solve but it also was not successful because it still had the problem of mess-cleanup, which pertained to the clean-up of large trash and the arrangement of newspapers, clothes, etc. Hence, we develop a new home mess-cleanup robot (McBot) to completely overcome this problem. The robot needs the capability for agile navigation and a novel manipulation system for mess-cleanup. The autonomous navigational system has to be controlled for the full scanning of the living room and for the precise tracking of the desired path. It must be also be able to recognize the absolute position and orientation of itself and to distinguish the messed object that is to be cleaned up from obstacles that should merely be avoided. The manipulator, which is not needed in a vacuum-cleaning robot, has the functions of distinguishing the large trash that is to be cleaned from the messed objects that are to be arranged. It needs to use its discretion with regard to the form of the messed objects and to properly carry these objects to the destination. In particular, in this paper, we describe our approach for achieving accurate localization using RFID for home mess-cleanup robots. Finally, the effectiveness of the developed McBot is confirmed through live tests of the mess-cleanup task.

Detection of Phantom Transaction using Data Mining: The Case of Agricultural Product Wholesale Market (데이터마이닝을 이용한 허위거래 예측 모형: 농산물 도매시장 사례)

  • Lee, Seon Ah;Chang, Namsik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.161-177
    • /
    • 2015
  • With the rapid evolution of technology, the size, number, and the type of databases has increased concomitantly, so data mining approaches face many challenging applications from databases. One such application is discovery of fraud patterns from agricultural product wholesale transaction instances. The agricultural product wholesale market in Korea is huge, and vast numbers of transactions have been made every day. The demand for agricultural products continues to grow, and the use of electronic auction systems raises the efficiency of operations of wholesale market. Certainly, the number of unusual transactions is also assumed to be increased in proportion to the trading amount, where an unusual transaction is often the first sign of fraud. However, it is very difficult to identify and detect these transactions and the corresponding fraud occurred in agricultural product wholesale market because the types of fraud are more intelligent than ever before. The fraud can be detected by verifying the overall transaction records manually, but it requires significant amount of human resources, and ultimately is not a practical approach. Frauds also can be revealed by victim's report or complaint. But there are usually no victims in the agricultural product wholesale frauds because they are committed by collusion of an auction company and an intermediary wholesaler. Nevertheless, it is required to monitor transaction records continuously and to make an effort to prevent any fraud, because the fraud not only disturbs the fair trade order of the market but also reduces the credibility of the market rapidly. Applying data mining to such an environment is very useful since it can discover unknown fraud patterns or features from a large volume of transaction data properly. The objective of this research is to empirically investigate the factors necessary to detect fraud transactions in an agricultural product wholesale market by developing a data mining based fraud detection model. One of major frauds is the phantom transaction, which is a colluding transaction by the seller(auction company or forwarder) and buyer(intermediary wholesaler) to commit the fraud transaction. They pretend to fulfill the transaction by recording false data in the online transaction processing system without actually selling products, and the seller receives money from the buyer. This leads to the overstatement of sales performance and illegal money transfers, which reduces the credibility of market. This paper reviews the environment of wholesale market such as types of transactions, roles of participants of the market, and various types and characteristics of frauds, and introduces the whole process of developing the phantom transaction detection model. The process consists of the following 4 modules: (1) Data cleaning and standardization (2) Statistical data analysis such as distribution and correlation analysis, (3) Construction of classification model using decision-tree induction approach, (4) Verification of the model in terms of hit ratio. We collected real data from 6 associations of agricultural producers in metropolitan markets. Final model with a decision-tree induction approach revealed that monthly average trading price of item offered by forwarders is a key variable in detecting the phantom transaction. The verification procedure also confirmed the suitability of the results. However, even though the performance of the results of this research is satisfactory, sensitive issues are still remained for improving classification accuracy and conciseness of rules. One such issue is the robustness of data mining model. Data mining is very much data-oriented, so data mining models tend to be very sensitive to changes of data or situations. Thus, it is evident that this non-robustness of data mining model requires continuous remodeling as data or situation changes. We hope that this paper suggest valuable guideline to organizations and companies that consider introducing or constructing a fraud detection model in the future.

A Study on the Changes in Functions of Ship Officer and Manpower Training by the Introduction of Maritime Autonomous Surface Ships (자율운항선박 도입에 따른 해기사 직능 변화와 인력양성에 관한연구)

  • Lim, Sung-Ju;Shin, Yong-John
    • Journal of Navigation and Port Research
    • /
    • v.46 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • This study aims to investigate changes in the demand for ship officers in response to changes in the shipping industry environment in which Maritime Autonomous Surface Ships (MASS) emerge according to the application of the fourth industrial revolution technology to ships, and it looks into changes in the skill of ship officer. It also analyzes and proposes a plan for nurturing ship officers accordingly. As a result of the degree of recognition and AHP analysis, this study suggests that a new training system is required because the current training and education system may cover the job competencies of emergency response, caution and danger navigation, general sailing, cargo handling, seaworthiness maintenance, emergency response, and ship maintenance and management, but tasks such as remote control, monitoring diagnosis, device management capability, and big data analysis require competency for unmanned and shore-based control. By evaluating the importance of change factors in the duties of ship officers in Maritime Autonomous Surface Ships, this study provides information on ship officer educational institutions' response strategies for nurturing ship officers and prioritization of resource allocation, etc. The importance of these factors was compared and evaluated to suggest changes in the duties of ship officers and methods of nurturing ship officers according to the introduction of Maritime Autonomous Surface Ships. It is expected that the findings of this study will be meaningful as it systematically derives the duties and competency factors of ship officers of Maritime Autonomous Surface Ships from a practical point of view and analyzed the perception level of each relevant expert to diagnose expert-level responses to the introduction of Maritime Autonomous Surface Ships.

A Study on Predicting the Logistics Demand of Inland Ports on the Yangtze River (장강 내수로 항만의 물류 수요 예측에 관한 연구)

  • Zhen Wu;Hyun-Chung Kim
    • Korea Trade Review
    • /
    • v.48 no.3
    • /
    • pp.217-242
    • /
    • 2023
  • This study aims to analyze the factors influencing the logistics demand of inland ports along the Yangtze River and predict future port logistics demand based on these factors. The logistics demand prediction using system dynamics techniques was conducted for a total of six ports, including Chongqing and Yibin ports in the upper reaches, Jingzhou and Wuhan ports in the middle reaches, and Nanjing and Suzhou ports in the lower reaches of the Yangtze River. The logistics demand for all ports showed an increasing trend in the mid-term prediction until 2026. The logistics demand of Chongqing port was mainly influenced by the scale of the hinterland economy, while Yibin port appeared to heavily rely on the level of port automation. In the case of the upper and middle reach ports, logistics demand increased as the energy consumption of the hinterland increased and the air pollution situation worsened. The logistics demand of the middle reach ports was greatly influenced by the hinterland infrastructure, while the lower reach ports were sensitive to changes in the urban construction area. According to the sensitivity analysis, the logistics demand of ports relying on large cities was relatively stable against the increase and decrease of influential factors, while ports with smaller hinterland city scales reacted sensitively to changes in influential factors. Therefore, a strategy should be established to strengthen policy support for Chongqing port as the core port of the upper Yangtze River and have surrounding ports play a supporting role for Chongqing port. The upper reach ports need to play a supporting role for Chongqing port and consider measures to enhance connections with middle and lower reach ports and promote the port industry. The development strategy for inland ports along the Yangtze River suggests the establishment of direct routes and expansion of the transportation network for South Korean ports and stakeholders. It can suggest expanding the hinterland network and building an efficient transportation system linked with the logistics hub. Through cooperation, logistics efficiency can be enhanced in both regions, which will contribute to strengthening the international position and competitiveness of each port.

Development of Yóukè Mining System with Yóukè's Travel Demand and Insight Based on Web Search Traffic Information (웹검색 트래픽 정보를 활용한 유커 인바운드 여행 수요 예측 모형 및 유커마이닝 시스템 개발)

  • Choi, Youji;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.155-175
    • /
    • 2017
  • As social data become into the spotlight, mainstream web search engines provide data indicate how many people searched specific keyword: Web Search Traffic data. Web search traffic information is collection of each crowd that search for specific keyword. In a various area, web search traffic can be used as one of useful variables that represent the attention of common users on specific interests. A lot of studies uses web search traffic data to nowcast or forecast social phenomenon such as epidemic prediction, consumer pattern analysis, product life cycle, financial invest modeling and so on. Also web search traffic data have begun to be applied to predict tourist inbound. Proper demand prediction is needed because tourism is high value-added industry as increasing employment and foreign exchange. Among those tourists, especially Chinese tourists: Youke is continuously growing nowadays, Youke has been largest tourist inbound of Korea tourism for many years and tourism profits per one Youke as well. It is important that research into proper demand prediction approaches of Youke in both public and private sector. Accurate tourism demands prediction is important to efficient decision making in a limited resource. This study suggests improved model that reflects latest issue of society by presented the attention from group of individual. Trip abroad is generally high-involvement activity so that potential tourists likely deep into searching for information about their own trip. Web search traffic data presents tourists' attention in the process of preparation their journey instantaneous and dynamic way. So that this study attempted select key words that potential Chinese tourists likely searched out internet. Baidu-Chinese biggest web search engine that share over 80%- provides users with accessing to web search traffic data. Qualitative interview with potential tourists helps us to understand the information search behavior before a trip and identify the keywords for this study. Selected key words of web search traffic are categorized by how much directly related to "Korean Tourism" in a three levels. Classifying categories helps to find out which keyword can explain Youke inbound demands from close one to far one as distance of category. Web search traffic data of each key words gathered by web crawler developed to crawling web search data onto Baidu Index. Using automatically gathered variable data, linear model is designed by multiple regression analysis for suitable for operational application of decision and policy making because of easiness to explanation about variables' effective relationship. After regression linear models have composed, comparing with model composed traditional variables and model additional input web search traffic data variables to traditional model has conducted by significance and R squared. after comparing performance of models, final model is composed. Final regression model has improved explanation and advantage of real-time immediacy and convenience than traditional model. Furthermore, this study demonstrates system intuitively visualized to general use -Youke Mining solution has several functions of tourist decision making including embed final regression model. Youke Mining solution has algorithm based on data science and well-designed simple interface. In the end this research suggests three significant meanings on theoretical, practical and political aspects. Theoretically, Youke Mining system and the model in this research are the first step on the Youke inbound prediction using interactive and instant variable: web search traffic information represents tourists' attention while prepare their trip. Baidu web search traffic data has more than 80% of web search engine market. Practically, Baidu data could represent attention of the potential tourists who prepare their own tour as real-time. Finally, in political way, designed Chinese tourist demands prediction model based on web search traffic can be used to tourism decision making for efficient managing of resource and optimizing opportunity for successful policy.

Irrigation Control for Improving Irrigation Efficiency in Coir Substrate Hydroponic System (코이어 배지 수경재배에서 관수효율 향상을 위한 급액 제어)

  • Yoo, Hyung-Joo;Choi, Eun-Young;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.153-160
    • /
    • 2015
  • The objectives of this study were to determine optimal length of off-time between irrigation cycles to improve irrigation efficiency using a frequency domain reflectometry (FDR) sensor-automated irrigation (FAI) system for tomato (Solanum lycopersicum L.) cultivation aimed at minimizing effluent from coir substrate hydroponics. For treatments, the 5-minute off-time length between 3-minute run-times (defined as 3R5F), 10-minute off-time length between 3-minute run-times (defined as 3R10F), or 15-minute off-time length between 5-minute run-times (defined as 5R15F) were set. During the 3-minute or 5-minute run-time, a 60mL or 80mL of nutrient solution was irrigated to each plant, respectively. Until 62 days after transplant (DAT) during the autumn to winter cultivation, daily irrigation volume was in the order of 3R5F (858mL) > 5R15F (409mL) > 3R10F (306mL) treatment, and daily drainage ratio was in the order of 3R5F (44%) > 5R15F (23%) > 3R10F (14%). Between 63 and 102 DAT, daily irrigated volume was in the order of 5R15F (888mL) > 3R5F (695mL) > 3R10F (524mL) with the highest drainage ratio, 19% (${\pm}2.6$), at the 5R15F treatment. During the spring to summer cultivation, daily irrigation volume and drainage ratio per plant was higher in the 3R5F treatment than that of the 3R10F treatment. For both cultivations, a higher water use efficiency (WUE) was observed under the 3R10F treatment. Integrated all the data suggest that the optimal off-time length is 10 minutes.