• Title/Summary/Keyword: 자동화된 머신러닝

Search Result 69, Processing Time 0.03 seconds

Exploratory Research on Automating the Analysis of Scientific Argumentation Using Machine Learning (머신 러닝을 활용한 과학 논변 구성 요소 코딩 자동화 가능성 탐색 연구)

  • Lee, Gyeong-Geon;Ha, Heesoo;Hong, Hun-Gi;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.2
    • /
    • pp.219-234
    • /
    • 2018
  • In this study, we explored the possibility of automating the process of analyzing elements of scientific argument in the context of a Korean classroom. To gather training data, we collected 990 sentences from science education journals that illustrate the results of coding elements of argumentation according to Toulmin's argumentation structure framework. We extracted 483 sentences as a test data set from the transcription of students' discourse in scientific argumentation activities. The words and morphemes of each argument were analyzed using the Python 'KoNLPy' package and the 'Kkma' module for Korean Natural Language Processing. After constructing the 'argument-morpheme:class' matrix for 1,473 sentences, five machine learning techniques were applied to generate predictive models relating each sentences to the element of argument with which it corresponded. The accuracy of the predictive models was investigated by comparing them with the results of pre-coding by researchers and confirming the degree of agreement. The predictive model generated by the k-nearest neighbor algorithm (KNN) demonstrated the highest degree of agreement [54.04% (${\kappa}=0.22$)] when machine learning was performed with the consideration of morpheme of each sentence. The predictive model generated by the KNN exhibited higher agreement [55.07% (${\kappa}=0.24$)] when the coding results of the previous sentence were added to the prediction process. In addition, the results indicated importance of considering context of discourse by reflecting the codes of previous sentences to the analysis. The results have significance in that, it showed the possibility of automating the analysis of students' argumentation activities in Korean language by applying machine learning.

Proposal Record Automation Service Based on AI by Using OCR and Pattern Analysis Algorithm (OCR과 패턴분석 알고리즘을 활용한 인공지능 기반 기록 자동화 서비스 제안)

  • Hwang, Yun-Young
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.530-532
    • /
    • 2019
  • 제안하는 서비스는 OCR(Optical Character Recognition, 광학문자인식)과 딥러닝 패턴분석 알고리즘을 활용하여 문서를 효율적으로 관리하는 서비스로 필기를 많이 하는 사용자를 위한 기능을 제공한다. 최근 다양한 분야에서의 머신러닝 기반의 OCR의 활용이 증가했지만 기존의 애플리케이션은 패턴 분석 알고리즘과 통계 기반의 OCR을 혼합하여 사용하기 때문에 필기체에 대한 인식률이 높지 않다. 이에 본 논문에서는 OCR과 패턴분석 알고리즘을 활용하여 필기체에 대한 높은 인식률을 제공하는 서비스를 제안한다.

Ensemble-based Counterfeit Detection Algorithm (앙상블 기반의 위조 탐지 알고리즘)

  • Ilkin Taghiyev;Youngbok-Cho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.101-102
    • /
    • 2023
  • 본 연구에서는 인터넷 상에서 발생되는 부정행위를 탐지할수 있는 신뢰 모델을 생성하고 개인의 프라이버시를 보장할수 있는 모델을 제시하였다. 인터넷 상에 게시판에 올려진 부정해위를 탐지하기 위해 앙상블 접근 방식 기반의 분류 모델을 제시하고 자동화된 도구를 제안하였다. 본 연구는 데이터에 대한 탐색적 데이터 분석을 수행하고 얻은 통찰력을 사용해 자연어처리 가반 텍스트를 기반으로 앙상블 기반의 위조 탐지 알고리즘을 제안하였다. 제안 알고리즘의 정확도는 99%로 자연어 처리에 높은 탐지율을 보였다.

  • PDF

A Study on Deep learning-based crop surface inspection automation system (딥러닝 기반 농작물 표면 검사 자동화 시스템 연구)

  • Kim, W.J.;Kim, S.B.;Kim, M.J.;Kim, M.J.;Kim, S.H.
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.758-760
    • /
    • 2022
  • 본 연구는 머신러닝의 한 종류인 YOLOv5를 이용하여 기존 육안 선별작업을 자동화 하는 기계를 설계하는 것이다. 본 연구에서는 영상촬영과 선별작업을 진행하는 컨베이어 기구와 선별 프로그램을 제작하고, 모든 표면을 검사해 사과의 품질을 3단계로 구별하는 작업을 진행하였다. 결과적으로 투입된 사과의 품질을 성공적으로 분류 하였다.

Combining AutoML and XAI: Automating machine learning models and improving interpretability (AutoML 과 XAI 의 결합 : 기계학습 모델의 자동화와 해석력 향상을 위하여)

  • Min Hyeok Son;Nam Hun Kim;Hyeon Ji Lee;Do Yeon Kim
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.924-925
    • /
    • 2023
  • 본 연구는 최근 기계학습 모델의 복잡성 증가와 '블랙 박스'로 인식된 머신러닝 모델의 해석 문제에 주목하였다. 이를 해결하기 위해, AutoML 기술을 사용하여 효율적으로 최적의 모델을 탐색하고, XAI 기법을 도입하여 모델의 예측 과정에 대한 투명성을 확보하려 하였다. XAI 기법을 도입한 방식은 전통적인 방법에 비해 뛰어난 해석력을 제공하며, 사용자가 머신러닝 모델의 예측 근거와 그 타당성을 명확히 이해할 수 있음을 확인하였다.

A Study of Big data-based Machine Learning Techniques for Wheel and Bearing Fault Diagnosis (차륜 및 차축베어링 고장진단을 위한 빅데이터 기반 머신러닝 기법 연구)

  • Jung, Hoon;Park, Moonsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.75-84
    • /
    • 2018
  • Increasing the operation rate of components and stabilizing the operation through timely management of the core parts are crucial for improving the efficiency of the railroad maintenance industry. The demand for diagnosis technology to assess the condition of rolling stock components, which employs history management and automated big data analysis, has increased to satisfy both aspects of increasing reliability and reducing the maintenance cost of the core components to cope with the trend of rapid maintenance. This study developed a big data platform-based system to manage the rolling stock component condition to acquire, process, and analyze the big data generated at onboard and wayside devices of railroad cars in real time. The system can monitor the conditions of the railroad car component and system resources in real time. The study also proposed a machine learning technique that enabled the distributed and parallel processing of the acquired big data and automatic component fault diagnosis. The test, which used the virtual instance generation system of the Amazon Web Service, proved that the algorithm applying the distributed and parallel technology decreased the runtime and confirmed the fault diagnosis model utilizing the random forest machine learning for predicting the condition of the bearing and wheel parts with 83% accuracy.

A Study on Prediction of EPB shield TBM Advance Rate using Machine Learning Technique and TBM Construction Information (머신러닝 기법과 TBM 시공정보를 활용한 토압식 쉴드TBM 굴진율 예측 연구)

  • Kang, Tae-Ho;Choi, Soon-Wook;Lee, Chulho;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.30 no.6
    • /
    • pp.540-550
    • /
    • 2020
  • Machine learning has been actively used in the field of automation due to the development and establishment of AI technology. The important thing in utilizing machine learning is that appropriate algorithms exist depending on data characteristics, and it is needed to analysis the datasets for applying machine learning techniques. In this study, advance rate is predicted using geotechnical and machine data of TBM tunnel section passing through the soil ground below the stream. Although there were no problems of application of statistical technology in the linear regression model, the coefficient of determination was 0.76. While, the ensemble model and support vector machine showed the predicted performance of 0.88 or higher. it is indicating that the model suitable for predicting advance rate of the EPB Shield TBM was the support vector machine in the analyzed dataset. As a result, it is judged that the suitability of the prediction model using data including mechanical data and ground information is high. In addition, research is needed to increase the diversity of ground conditions and the amount of data.

A study on machine learning-based defense system proposal through web shell collection and analysis (웹쉘 수집 및 분석을 통한 머신러닝기반 방어시스템 제안 연구)

  • Kim, Ki-hwan;Shin, Yong-tae
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.87-94
    • /
    • 2022
  • Recently, with the development of information and communication infrastructure, the number of Internet access devices is rapidly increasing. Smartphones, laptops, computers, and even IoT devices are receiving information and communication services through Internet access. Since most of the device operating environment consists of web (WEB), it is vulnerable to web cyber attacks using web shells. When the web shell is uploaded to the web server, it is confirmed that the attack frequency is high because the control of the web server can be easily performed. As the damage caused by the web shell occurs a lot, each company is responding to attacks with various security devices such as intrusion prevention systems, firewalls, and web firewalls. In this case, it is difficult to detect, and in order to prevent and cope with web shell attacks due to these characteristics, it is difficult to respond only with the existing system and security software. Therefore, it is an automated defense system through the collection and analysis of web shells based on artificial intelligence machine learning that can cope with new cyber attacks such as detecting unknown web shells in advance by using artificial intelligence machine learning and deep learning techniques in existing security software. We would like to propose about. The machine learning-based web shell defense system model proposed in this paper quickly collects, analyzes, and detects malicious web shells, one of the cyberattacks on the web environment. I think it will be very helpful in designing and building a security system.

A Study on Machine Learning-Based Real-Time Automated Measurement Data Analysis Techniques (머신러닝 기반의 실시간 자동화계측 데이터 분석 기법 연구)

  • Jung-Youl Choi;Jae-Min Han;Dae-Hui Ahn;Jee-Seung Chung;Jung-Ho Kim;Sung-Jin Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.685-690
    • /
    • 2023
  • It was analyzed that the volume of deep excavation works adjacent to existing underground structures is increasing according to the population growth and density of cities. Currently, many underground structures and tracks are damaged by external factors, and the cause is analyzed based on the measurement results in the tunnel, and measurements are being made for post-processing, not for prevention. The purpose of this study is to analyze the effect on the deformation of the structure due to the excavation work adjacent to the urban railway track in use. In addition, the safety of structures is evaluated through machine learning techniques for displacement of structures before damage and destruction of underground structures and tracks due to external factors. As a result of the analysis, it was analyzed that the model suitable for predicting the structure management standard value time in the analyzed dataset was a polynomial regression machine. Since it may be limited to the data applied in this study, future research is needed to increase the diversity of structural conditions and the amount of data.