본 논문에서는 옴니버스 형태의 동영상을 각 프로그램 별로 자동 분할하는 방법에 대해 제안하고자 한다. 국내 TV 프로그램의 경우 대부분의 개그 프로그램에서는 코너 별로 상단 또는 하단의 일정 위치에 코너명을 캡션으로 삽입하여 옴니버스 형태의 영상을 서비스한다. 이러한 코너명을 태깅아이콘으로 하여 지속되는 구간을 검출하여 시작시점과 종료시점을 검출함으로써 동영상을 의미적으로 분할 할 수 있다. 하지만 태깅아이콘의 경우 매우 높은 투명도를 갖는 경우가 많으므로 본 연구에서는 에지와 시간적인 지속성을 이용하여 에피소드를 분할하는 방법을 제안하고, 옴니버스 형태의 다양한 개그 프로그램에 대해 실험하여 제안한 방법의 우수성을 보인다.
본고는 기존 연구에서 상정한 의미역에 기반하여 의미역 태깅 작업 중 실제 문장에 의미역을 태깅하는 데 나타난 문제점들에 대해 재고해보았다. 의미역을 태깅하는 데에 격틀 사전을 이용한 반자동의미역태깅프로그램의 정상적인 구동을 위한 사전의 재정비와 실제 문장에서는 드러나지만 사전에서는 나타나지 않는 문형 정보를 상세히 검토해야 함을 알게 되었다. 이를 해결하기 위해 격틀사전의 기본 사전이 표준국어대사전의 통사정보 제시를 문제삼아 이를 해결하기 위한 방안을 모색하고, 실제 문장에서 격교체에 의해 나타나고 있는 논항정보교체에 대처하기 위한 방안을 마련하고자 한다.
이미지의 시각단어를 이용한 이미지의 자동분류 및 태깅에 관련된 연구가 다양하게 진행되고 있지만, 기존의 연구는 특징점 추출과 이미지 비교를 위하여 비슷한 구도의 객체에만 적용하거나 배경을 제거한 객체를 대상으로 하는 등 선별된 이미지를 주로 사용하고 있다. 본 논문에서는 사용자가 특징점의 비교를 의도하지 않고 배경을 포함하여 촬영한 이미지를 대상으로 하여 이미지 시각단어를 이용한 자동 분류 및 태깅의 정확도를 향상시키는 방법을 소개하고자 한다.
본 논문은 음절 단위 한국어 품사 태깅 방법의 성능 개선을 위해 기분석사전과 기계학습 방법을 결합하는 방법을 제안한다. 음절 단위 품사 태깅 방법은 형태소분석을 수행하지 않고 품사 태깅만을 수행하는 방법이며, 순차적 레이블링(Sequence Labeling) 문제로 형태소 태깅 문제를 접근한다. 본 논문에서는 순차적 레이블링 기반 음절 단위 품사 태깅 방법의 전처리 단계로 품사 태깅말뭉치와 국어사전으로부터 구축된 복합명사 기분석사전과 약 1천만 어절의 세종 품사 태깅말뭉치로부터 자동 추출된 어절 사전을 적용함으로써 품사 태깅 성능을 개선시킨다. 성능 평가를 위해서 약 74만 어절의 세종 품사 태깅말 뭉치로부터 67만 어절을 학습 데이터로 사용하고 나머지 7만 4천 어절을 평가셋으로 사용하였다. 기계학습 방법만을 사용한 경우에 96.4%의 어절 정확도를 보였으며, 기분석사전을 결합한 경우에는 99.03%의 어절 정확도를 보여서 2.6%의 성능 개선을 달성하였다. 퀴즈 분야의 평가셋으로 실험한 경우에도 기계학습 엔진은 96.14% 성능을 보인 반면, 하이브리드 엔진은 97.24% 성능을 보여서 제안 방법이 다른 분야에도 효과적임을 확인하였다.
인터넷이 급속히 발달하는 가운데 스마트폰, 디지털 카메라, 블랙박스 등의 기기에서 수집되는 방대한 영상 데이터가 소셜 미디어 사이트를 통해 빠르게 공유되고 있다. 소셜 미디어 공유 사이트에서는 일반적으로 이미지의 태그 정보를 사용하는데, 멀티미디어를 공유하는 방법이 쉬워지고 그 양이 폭발적으로 증가함에 따라 이미지에 태그를 붙여야 하는 일은 번거로움이 되고 있다. 또한 태그가 잘못 붙여지거나 안 붙은 경우에는 이미지 검색 정확도가 떨어질 가능성이 있다. 본 논문에서는 이미지의 내용정보를 이용하여 자동으로 이미지로부터 태그를 추출하는 방법을 제안한다. 제안하는 방법은 ImageNet에서 제공하는 대용량의 이미지 데이터와 라벨을 CNN(Convolutional Neural Network) 딥러닝 기법으로 학습시킨 후, 인스타그램 이미지로부터 라벨 정보를 추출하는 것이다. 추출된 라벨 정보를 이용하여 자동 태깅한 후, 검색에 활용했을 때 인스타그램의 기존 검색보다 높은 정확도를 가지고 있음을 알 수 있었다.
대용량 동영상을 대상으로 한 등장인물 색인에 대한 수요가 증가함에 따라, 많은 시간과 비용이 소요되는 수동 태깅의 단점을 보완할 수 있는 자동 태깅을 이용한 자동 색인이 연구되고 있다. 하지만, 자동 색인은 인물을 100% 정확하게 검출하지 못하므로 검출된 인물에 대해 정확도를 함께 표현해야 한다. 본 논문에서는 이러한 정보를 포스팅 리스트에 효율적으로 저장하는 방법과 등장인물의 검색시 관련 동영상들을 효율적으로 찾기 위한 순위 결정 방법을 제안한다. 실험을 통하여 제안하는 색인 정보 저장 방법이 포스팅 리스트의 압축에 효과적임을 입증하였다. 또한 제안한 순위 결정 방법이 관련 동영상을 찾는데 효과적임을 입증하였다.
한국어 어절의 모든 가능한 형태소 분석 결과는 형태소 격자 구조로 대응된다. 즉, 형태소 분석과정은 형태소 격자 구조를 만드는 과정과 동일하다고 말할 수 있다. 기존의 방법들은 여러개의 가능한 분석 결과에 중복되는 형태소들을 그대로 저장하여 자료 관리의 비효율성이 있었다. 본 논문에서 설명하는 형태소 분석기는 형태소 분석의 중간 결과를 공유하여, 자료의 중복 저장을 피했고, 모든 가능한 형태소 분석 결과를 형태소 격자 구조의 가능한 모든 경로로 대응하였다. 한편, 형태소 배열 규칙은 품사 태깅된 말뭉치로부터 자동으로 추출되었다. 또한, 사전도 품사 태깅된 말뭉치로부터 자동으로 구축되었으며, 굴절된 형태소는 등록되지 않는다. 그러나 불규칙 및 축약 현상에 관한 정보는 수동으로 추가되었다. 불규칙 및 축약 현상의 발생 가능 위치는 한글 자소 패턴에 의해서 찾아지고, 이들 현상의 처리는 절차적인 방법에 의해 해결되었다.
한국어에 있어서 품사 태깅은 형태소 분석결과의 모호성을 제거하는 것으로, 기존의 방법을 보면, 확률을 이용하는 방법, 퍼지망을 이용하는 방법, 신경망을 이용하는 방법등 다양하다. 현재의 주류가 확률을 이용한 방법이다. 하지만, 이 방법은 제한된 윈도우 크기와 품사사이의 관계만을 이용한다는 한계점을 지니고 있다. 본 논문에서는 확률을 이용한 결과에, 확률에서 다루지 못하는 범위에 대하여 자동 학습된 규칙을 추가로 적용하여 이 한계점을 극복한다. 규칙 적용시 윈도우 크기를 임의로 정할 수 있고, 품사사이의 관계외에 어절사이의 관계도 고려할 수 있으므로 확률적 방법이 다루지 못하는 부분에 대하여 어휘단계에서의 교정이 가능하게 된다. 현재 20가지 정도의 규칙을 수작업 코딩하여 사용한 결과 확률적 방법의 성능을 3% 정도 향상시킬 수 있었으며, 앞으로 규칙생성을 자동학습할 경우 더 큰 성능향상을 기대해 볼 수 있다.
형태소 품사 태거는 언어처리 시스템의 전처리기로 많이 활용되고 있다. 형태소 품사 태거의 성능 향상은 언어처리 시스템의 전체 성능 향상에 크게 기여할 수 있다. 자동번역과 같이 복잡도가 놓은 언어처리 시스템은 최근 특정 도메인에서 좋은 성능을 나타내는 시스템을 개발하고자 한다. 본 논문에서는 기존 일반도메인에서 학습된 LHMM이나 HMM 기반의 영어 형태소 품사 태거를 특정 도메인에 적응하여 높은 성능을 나타내는 방법을 제안한다. 제안하는 방법은 특정도메인에 대한 원시코퍼스를 이용하여 HMM이나 LHMM의 기학습된 전이확률과 출력확률을 도메인에 적합하게 반자동으로 변경하는 도메인 적응 방법이다. 특허도메인에 적응하는 실험을 통하여 단어단위 태깅 정확률 98.87%와 문장단위 태깅 정확률 78.5%의 성능을 보였으며, 도메인 적응하지 않은 형태소 태거보다 단어단위 태깅 정확률 2.24% 향상(ERR: 6.4%)고 문장단위 태깅 정확률 41.0% 향상(ERR: 65.6%)을 보였다.
한국어 감정분석에 대한 연구는 활발하게 진행되고 있다. 그렇지만 학습 및 평가 말뭉치 표현에 대한 논의가 부족하다. 본 논문은 한국어 감정분석에 대해 정의하고, 말뭉치 제작을 위한 가이드라인을 제시한다. 또한, 태깅 가이드라인에 따라 말뭉치를 구축하였으며 한국어 감정분석을 위한 반자동 태깅 도구를 구현하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.