• Title/Summary/Keyword: 자동차 진동

Search Result 692, Processing Time 0.031 seconds

자동차에 CAE적용

  • 이재원;김민수
    • Journal of the KSME
    • /
    • v.29 no.3
    • /
    • pp.306-316
    • /
    • 1989
  • 최근 자동차 업계의 CAE 방향을 하드웨어 측면에서 보면, 대용량의 계산능력을 갖춘 슈퍼 컴 퓨터와 자체 계산능력을 갖춘 워크스테이션의 활용이 점차적으로 확대 되어가고 있다. 이것을 배경으로 크래쉬 시뮬레이션, 자동차 전체 시스템의 진동 및 소음해석, 공기역학적 특성을 고 려한 형상 최적화 등이 행해지고 있다. 이와 같은 해석을 원활히 수행하기 위해서 고려되어야 할 사항은 우선 사용 소프트웨어 상호간의 데이터 인터페이스를 충분히 고려한 체계적인 총합 CAE 시스템의 구축이고, 인공지능(artificial intelligence) 언어를 이용하여 사용이 용이한 해석 경 험(knowhow)의 데이터 베이스를 구축하는 것도 바람직하다. 또한 상용 소프트웨어가 지원하지 못하는 분야에 대한 자체 프로그램의 개발도 필요한 것이다.

  • PDF

자동차 시트의 안락성 특성 인자의 상관관계 연구

  • 박용환;이승용
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.11a
    • /
    • pp.453-459
    • /
    • 2000
  • 개개인의 생활 수준 향상으로 자동차가 개인 교통 수단이나 레저 생활용으로 더욱 많이 활용되면서 장시간 운전이 늘어감에 따라, 운전자의 신체적 피로는 운전 중의 사고의 원인이 되고 있으며, 장시간 운전시의 피로감의 원인이라고 할 수 있는 엔진과 노면으로부터 인체에 전달되는 진동에 대한 대비책으로, 시트 부분의 내진 및 감쇠 설계가 실제로 운전자가 느끼는 승차감 즉 안락성에 결정적인 역할을 한다고 볼 수 있다. 국내의 경우 자동차 시트 기술은 대부분 외국 기술에 의존하고 있는 실정이어서 전문적인 연구는 매우 미흡한 실정이다.(중략)

  • PDF

A Study on Vibration Analysis of Vehicle Rear-view Mirror (자동차(自動車) 룸 밀러 진동에 대한 연구(硏究))

  • Lim, S.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.1-7
    • /
    • 1995
  • Vehicle has two kinds of mirrors to check the rear. Especially inner rear-view mirror(room mirror) is easy to vibrate. A vibration of vehicle inner rear-view mirror affects safe driving. This study presents both of analysis of cause of mirror vibration and resolution in order to improve that throughout analysis by elasticity theory, FEM, and test.

  • PDF

A Study on Vibration Monitoring for Inferior Window Regulator Selection (자동차 유리창 개폐장치의 불량판정을 위한 진동 모니터링에 관한 연구)

  • Chun, C.K.;Park, S.J.;Yi, G.S.;Ma, Y.S.
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.1
    • /
    • pp.18-24
    • /
    • 2007
  • If an error occurs in a product that contains a source of vibration, an abnormal noise vibration will occur. Recently a system that has been modified from the previous method of noise detection-a method of appraising the quality of manufactured automobile part by using human ears-is being implemented in the industries of automobile parts. This new system distinguishes the product's vibration signals by measuring and analyzing the signals. Following the recent trend, it has been concluded that the appraisal process of Window Regulator Module needed an improvement. Thus, a vibration monitoring system using LabVIEW, which measures and analyzes vibration signals from a sector gear's connected part by using an accelerometer, has been developed. By analyzing the characteristics of vibration signals of both inferior and superior goods, now the quality of the product can be evaluated much more accurately.

  • PDF

Automotive Windshield Wiper Linkage Dynamic Modeling for Vibration Analysis (자동차 와이퍼 링키지의 진동해석을 위한 동역학 모델링)

  • Lee, Byoung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.465-472
    • /
    • 2008
  • An automotive windshield wiper system is modeled mainly for vibration analysis purpose. The model is composed of solid links, ideal joints, imperfect joints to simulate unavoidable manufacturing defects and bushings having stiffness, contact between a wiper blade and a wind screen glass, friction, a spring and an actuator. Main stream of wiper dynamics analysis has been obtaining a closed form of system of equations using Newton's or Lagrange's formula and doing a numerical simulation study to understand and predict the behavior of it. However, the modeling process is complex since a wiper system is of multibody and a contact problem occurs. When imperfection, such as dead zone of a joint and stiffness of a rubber bushing, should be included, the added complexity makes the modeling difficult. Since the imperfection is understood as main cause of problematic vibration, the dynamics model of a wiper system aiming vibration analysis should include such unavoidable manufacturing defects in the model. An open form of dynamic model of a automotive windshield wiper system with imperfect joints using a commercial software is obtained and a simulation analyssis is conducted for vibration reduction study.

Vibration Control of Vehicle Suspension Featuring Magnetorheological Dampers: Road Test Evaluation (MR 댐퍼를 적용한 자동차 현가장치의 진동제어 : 실차시험 평가)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.980-985
    • /
    • 2008
  • This paper presents vehicle road test of a semi-active suspension system equipped with continuously controllable magnetorheological (MR) dampers. As a first step, front and rear MR dampers are designed and manufactured based on the optimized damping force levels and mechanical dimensions required for a commercial middle-sized passenger vehicle. After experimentally evaluating dynamic characteristics of the MR dampers, the test vehicle is prepared for road test by integrating current suppliers, real-time data acquisition system and numerous sensors such as accelerometer and gyroscope. Subsequently, the manufactured four MR dampers (two for front parts and two for rear parts) are incorporated with the test vehicle and a skyhook control algorithm is formulated and realized in the data acquisition system. In order to emphasize practical aspect of the proposed MR suspension system, road tests are undertaken on proving grounds: bump and paved roads. The control responses are evaluated in both time and frequency domains by activating the MR dampers.

  • PDF

Vibration Control of Vehicle Suspension Featuring Magnetorheological Dampers : Road Test Evaluation (MR댐퍼를 적용한 자동차 현가장치의 진동제어 : 실차시험 평가)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.235-242
    • /
    • 2009
  • This paper presents vehicle road test of a semi-active suspension system equipped with continuously controllable magnetorheological(MR) dampers. As a first step, front and rear MR dampers are designed and manufactured based on the optimized damping force levels and mechanical dimensions required for a commercial middle-sized passenger vehicle. After experimentally evaluating dynamic characteristics of the MR dampers, the test vehicle is prepared for road test by integrating current suppliers, real-time data acquisition system and numerous sensors such as accelerometer and gyroscope. Subsequently, the manufactured four MR dampers(two for front parts and two for rear parts) are incorporated with the test vehicle and a skyhook control algorithm is formulated and realized in the data acquisition system. In order to emphasize practical aspect of the proposed MR suspension system, road tests are undertaken on proving grounds: bump and paved roads. The control responses are evaluated in both time and frequency domains by activating the MR dampers.