• 제목/요약/키워드: 자동차 모델 인식

검색결과 112건 처리시간 0.025초

문자 인식 향상을 위한 회전 정렬 알고리즘에 관한 연구 (A Study on Rotational Alignment Algorithm for Improving Character Recognition)

  • 진고환
    • 한국융합학회논문지
    • /
    • 제10권11호
    • /
    • pp.79-84
    • /
    • 2019
  • 영상을 기반으로 하는 기술들의 지속적인 발전으로 다양한 분야에서 활용되고 있고, 카메라를 통하여 획득한 영상의 객체를 분석하고 판별하는 비전 시스템의 기술 수요가 급속하게 증가하고 있다. 비전 시스템의 핵심 기술인 영상처리는 반도체 생산 분야의 불량 검사, 타이어 표면의 숫자 및 심볼과 같은 객체 인식 검사 등에 사용되고 있고, 자동차 번호판 인식 등의 연구가 계속하여 이루어지고 있는 실정으로, 객체를 신속, 정확하게 인식할 필요가 있다. 본 논문에서는 곡면과 같은 곳에 마킹되어 있는 숫자나 심볼과 같이 기울어진 객체를 인식하기 위하여 입력된 영상 이미지의 객체 기울기에 대한 각도 값을 확인하여 객체의 회전 정렬을 통한 인식 모델을 제안한다. 제안 모델은 컨투어 알고리즘을 기반으로 객체 영역을 추출하고, 객체의 각도를 산출한 후, 회전 정렬된 이미지에 대한 객체 인식을 진행할 수 있는 모델이다. 향후 연구에서는 기계학습을 통한 탬플릿 매칭 연구가 필요하다.

웹상에서의 HMM을 이용한 한국에 음성인식 (Speech Recognition using HMM over the WWW)

  • 최광국;이재왕;김철;최승호
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1999년도 학술발표대회 논문집 제18권 2호
    • /
    • pp.77-80
    • /
    • 1999
  • 본 논문에서는 웹상에서의 음성인식 시스템을 구현하기 위해 자바애플릿과 연속분포HMM을 이용하여 단어 단위 인식을 실행하였다. 이 시스템은 Browser-embedded 모델로 구성되었으며 클라이언트컴퓨터에서는 애플릿으로 음성을 처리하여 특징파라미터들을 인터넷을 통해 서버컴퓨터로 보내고, 서버의 음성인식기는 전향 알고리듬을 적용하여 인식된 결과를 클라이언트컴퓨터에게 보내어 문자로 출력하도록 설계하였다. 훈련DB는 자동차 항법시스템에서 사용되는 22개 단어로 구축되었다.

  • PDF

자동차 부품 품질검사를 위한 비전시스템 개발과 머신러닝 모델 비교 (Development of vision system for quality inspection of automotive parts and comparison of machine learning models)

  • 박영민;정동일
    • 문화기술의 융합
    • /
    • 제8권1호
    • /
    • pp.409-415
    • /
    • 2022
  • 컴퓨터 비전은 카메라를 이용하여 측정대상의 영상을 획득하고, 추출하고자 하는 특징 값, 벡터, 영역 등을 알고리즘과 라이브러리 함수를 응용하여 검출한다. 검출된 데이터는 사용하는 목적에 따라 다양한 형태로 계산되고 분석한다. 컴퓨터 비전은 다양한 곳에 활용되고 있으며, 특히 자동차의 부품을 자동으로 인식하거나 품질을 측정하는 분야에 많이 활용된다. 컴퓨터 비전을 산업분야에서 머신비전이라는 용어로 활용되고 있으며, 인공지능과 연결되어 제품의 품질을 판정하거나 결과를 예측하기도 한다. 본 연구에서는 자동차 부품의 품질을 판정하기 위한 비전시스템을 구축하고, 생산된 데이터에 5개의 머신러닝 분류 모델을 적용하여 그 결과를 비교하였다.

잡음환경에서의 음성인식을 위한 모델 파라미터 변환 방식에 관한 연구 (A Study on a Model Parameter Compensation Method for Noise-Robust Speech Recognition)

  • 장육현;정용주;박성현;은종관
    • 한국음향학회지
    • /
    • 제16권5호
    • /
    • pp.112-121
    • /
    • 1997
  • 본 논문에서는 잡음에 강한 음성 인식기를 위한 모델 파라미터 변환 방식에 관하여 살펴보았다. 모델 파라미터 변환에 있어서 잡음에 대한 어떠한 통계 모델도 사용하지 않고 각 단어 단위로 수행되어 실시간 음성 인식이 가능하도록 하였다. Parallel model combination(PCM)은 본 논문에서 제안한 방법과의 성능 비교를 위하여 cepstrum 영역에서 구현되었다. 본 논문에서 제안한 PCM 방법은 modified PCM(MPMC)라 하며, 이 방법은 각 hidden Markov mode(HMM)의 state별로 평균적인 가우시안 믹스처(Gaussian mixture)의 변화률과 개별적인 변화률간에 결합지수를 이용하여 평균을 재조정한다. 또한, vector Taylor series 근사화를 이용한 모델 파라미터 변환을 위하여 cepstrum 영역에서의 환경모델 예측을 위한 expectation-maximization(EM) 해를 유도하여 구현하였다. 본 논문에서 구현된 알고리즘들의 성능 위해 HMM 인식기를 이용한 화자독립 고립단어 인식을 수행하였다. 시용된 잡음은 가우시안 백색 잡음과 주행중에 녹음된 자동차 잡음이며, 각 잡음울 signal-to-noise ratio(SNR)별로 사용하였다. 잡음의 모델은 1 state HMM으로 단어시작 3 프레임(frame)을 이용하여 만들어졌다. 인식 결과는 VTS 접근방식을 이용하였을 경우 매우 우수한 인식률을 나타내었으며, MPMC의 경우도 기존의 PMC보다 인식률이 향상되었다. 특히, 영차 VTS의 경우는 단순히 평균만을 조정하였음에도 불구하고 PMC와 MPMC보다 인식률이 우수하게 나타났다.

  • PDF

딥러닝과 의미론적 영상분할을 이용한 자동차 번호판의 숫자 및 문자영역 검출 (Detection of Number and Character Area of License Plate Using Deep Learning and Semantic Image Segmentation)

  • 이정환
    • 한국융합학회논문지
    • /
    • 제12권1호
    • /
    • pp.29-35
    • /
    • 2021
  • 자동차 번호판 인식은 지능형 교통시스템에서 핵심적인 역할을 담당한다. 따라서 효율적으로 자동차 번호판의 숫자 및 문자영역을 검출하는 것은 매우 중요한 과정이다. 본 연구에서는 딥러닝과 의미론적 영상분할 알고리즘을 적용하여 효과적으로 자동차 번호판의 번호영역을 검출하는 방법을 제안한다. 제안된 방법은 화소 투영과 같은 전처리과정 없이 번호판 영상에서 바로 숫자 및 문자영역을 검출하는 알고리즘이다. 번호판 영상은 도로 위에 설치된 고정 카메라로 부터 획득한 영상으로 날씨 및 조명변화 등을 모두 포함한 다양한 실제 상황에서 촬영된 것을 사용하였다. 입력 영상은 색상변화를 줄이기 위해 정규화하고 실험에 사용된 딥러닝 신경망 모델은 Vgg16, Vgg19, ResNet18 및 ResNet50이다. 제안방법의 성능을 검토하기 위해 번호판 영상 500장으로 실험하였다. 학습을 위해 300장을 할당하였으며 테스트용으로 200장을 사용하였다. 컴퓨터모의 실험결과 ResNet50을 사용할 때 가장 우수하였으며 95.77% 정확도를 얻었다.

독립성분 분석을 이용한 번호판 숫자 인식 (Recognition of Numeric Characters in License Plate based on Independent Component Analysis)

  • 정병준;강현철
    • 대한전자공학회논문지SP
    • /
    • 제46권2호
    • /
    • pp.99-107
    • /
    • 2009
  • 본 논문에서는 자동차 번호판 숫자의 특징을 추출하기 위해 강화된 독립성분분석(independent component analysis)의 혼합모델을 제안한다 독립성분분석은 고차 통계적 특성만을 이용하기 때문에 고차 통계적 특성과 숫자 종류별 상관관계에 대한 특성을 고려하지 못한다. 이러한 독립성분분석의 한계를 극복하기 위해, 본 논문에서는 주성분분석(principle component analysis)과 선형판별분석(linear discriminant analysis)을 조합한 혼합 모델 형태의 독립성분분석을 제안한다. 실험 결과, 제안된 혼합 모델은 독립성분분석이나 다른 혼합 모델들보다 특징 추출과 인식에서 우수한 성능을 보임을 확인하였다.

PCMM 기반 특징 보상 기법에서 변별력 향상을 위한 Minimum Classification Error 훈련의 적용 (Minimum Classification Error Training to Improve Discriminability of PCMM-Based Feature Compensation)

  • 김우일;고한석
    • 한국음향학회지
    • /
    • 제24권1호
    • /
    • pp.58-68
    • /
    • 2005
  • 본 논문에서는 잡음 환경에서 강인한 음성 인식을 위하여 특징 보상 기법의 성능을 향상시킬 수 있는 방법을 제안한다. 기존의 음성 모델 기반의 특징 보상 기법에서 이용되는 오염 음성 모델 추정 방식은 입력 음성에 대한 변별력 있는 사후 확률 예측을 보장하지 못하며, 부정확하게 계산된 사후 확률은 복구된 음성에서 명료도 하락의 문제를 일으킨다. 제안하는 기법에서는 오염 음성 모델 추정 과정에 분별적 훈련 방식의 하나인 최소 분류 오류 (MCE) 훈련 기법을 도입한다. MCE 훈련 기법을 적용하기 위해 변별력 하락의 가능성을 가지는 '경쟁 요소' 를 결정하는 기법을 제안한다. 병렬결합된 혼합 모델 (PCMM) 기반의 특징 보상에 MCE 훈련 기법을 적용하는 과정을 제안하고 변별력 향상의 영향을 관찰한다. Aurora 2.0 데이터베이스와 실제 자동차 주행 환경에서 수집된 음성 데이터베이스에 대한 성능 평가를 실시한다. 실험 결과는 제안한 기법이 음성 인식 성능 향상에 도움이 되는 것을 입증한다.

유비쿼터스 환경에서의 컨텍스트-인식을 위한 자생적 컨텍스트 모델과 서비스의 설계 (Design of the Context Autogenesis Model and Service for Context-Aware in Ubiquitous Environments)

  • 오동열;오해석
    • 한국통신학회논문지
    • /
    • 제30권4B호
    • /
    • pp.226-234
    • /
    • 2005
  • 유비쿼터스 컴퓨팅에서 컨텍스트-인식은 사용자에게 개인화된 최적의 서비스를 제공하기 위하여 서비스 추론을 위한 입력 데이터를 획득하는 중요한 과정이다. 기존 연구는 사용자와 주변 환경 정보를 컨텍스트 인식의 주요대상으로 간주하고, 이를 위한 센싱 기반의 미들웨어나 공간 내의 대상에 식별자를 부여하여 이를 관리하는 서버를 제시하고 있다. 가정이나 사무실, 혹은 자동차와 같이 사용자가 많은 시간을 보내는 동일한 공간에서는 사용자에게 제공되었던 서비스의 일련적인 상황 정보가 개인화된 최적의 서비스를 추론하기 위한 중요한 요소가 될 수 있다. 본 논문은 사용자와 사용자에게 제공된 서비스 간에 일련의 상황 정보를 사용자의 휴대용 디바이스에 저장하고, 이를 컨텍스트-인식의 대상으로 확장하는 자생적 컨텍스트 모델을 제안한다. 제안 모델은 컨텍스트-인식 단계에서 발생하는 중복된 센싱과 불필요한 검색을 최소화하고 사용자의 익명성을 최대한 보장하며 미들웨어의 컨텍스트 관리를 비용을 줄인다.

완전 자율주행자동차에 대한 도로이용자 수용성 요인 분석 : 운전자 및 보행자를 대상으로 (An Analysis of Road User Acceptance Factors for Fully Autonomous Vehicles : For Drivers and Pedestrians)

  • 정미경;최미선
    • 한국ITS학회 논문지
    • /
    • 제21권5호
    • /
    • pp.117-132
    • /
    • 2022
  • 본 연구는 완전 자율주행자동차(Level 4 이상)에 대한 도로이용자 수용성 영향요인 분석을 목적으로 한다. 조사대상은 완전 자율주행자동차와 도로를 공유하는 일반자동차 운전자와 보행자로 설정하였다. 기술에 대한 신뢰, 호환성, 정책, 인지된 안전성, 인지된 유용성이라는 5가지 수용성 요인을 선정하고, 행동의도에 미치는 영향을 구조방정식 모형(Structural Equation Modeling, SEM)으로 분석하였다. 완전 자율주행자동차 수용에 있어 수용주체에 관계없이 인지된 안전성과 기술에 대한 신뢰가 매우 중요한 것으로 확인되었으며, 정책은 영향력이 없었다. 호환성 및 인지된 유용성은 보행자 보다 운전자에게 특히 영향력 있는 요인이었다. 도로이용자의 수용성 향상을 위해서는 완전 자율주행자동차의 기술적인 완성도 확보가 무엇보다도 중요하다. 완전 자율주행자동차의 안전운전능력에 대한 인증 및 평가가 철저하게 수행되고, 그 결과를 토대로 도로이용자의 인식을 개선할 필요가 있다. 도로이용자 대상 교육 및 홍보를 통해 완전 자율주행자동차를 긍정적으로 인식하게 하고, 완전 자율주행자동차와 도로이용자 간 원활한 상호작용이 가능하도록 지원해야 한다.

교통 정보 검지기 및 지능형 자동차 개발을 위한 영상 처리 알고리즘

  • 문영수;정상철;이준웅;강동중;권인소
    • 제어로봇시스템학회지
    • /
    • 제2권6호
    • /
    • pp.50-62
    • /
    • 1996
  • 이 글에서는 본 실험실에서 개발한, 교통정보 추출을 위한 차량검지 알고리즘과 차량 추적 알고리즘, 모델에 기반한 차량의 인식과 추적을 위한 알고리즘, 지능형 차량을 위한 선행차량 인식과 차선 인식을 위한 영상 알고리즘에 대하여 살펴 보았고, 이들 알고리즘을 직접 도로영상에 적용하여 그 가능성을 살펴보았다. 교통 정보 추출용 차량 검지 알고리즘은 실험실에서 구성한 영상 검지기 시스템에 실제 적용되어 실시간으로 작동하고 있다. 그렇지만, 아직까지는 대부분의 알고리즘이 실시간 구현과 시스템 적용성에서 미흡한 상태이다. 따라서, 본 실험실에서는 이미 개발된 영상 알고리즘의 신뢰성 제고와 실시간 처리를 위해 알고리즘 자체의 성능 향상 뿐만 아니라 이를 수행하는 하드웨어에 대한 연구도 병행하고 있다.

  • PDF