• Title/Summary/Keyword: 자동차 구조

Search Result 1,345, Processing Time 0.03 seconds

Conductive Properties of Thermoplastic Carbon Fiber Reinforced Plastics Highly Filled with Carbon Fiber Fabrics and Conductive Carbon Fillers (탄소섬유 직물 및 전도성 탄소 필러가 고충진 된 열가소성 탄소섬유강화플라스틱의 전도 특성)

  • Kim, Seong Yun;Noh, Ye Ji;Jang, Ji-un;Choi, Seong Kyu
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.290-295
    • /
    • 2021
  • The application of lightweight structural composites to automobiles as a solution in line with global fuel economy regulations to curb global warming is recognized as a megatrend. This study was conducted to provide a technical approach that can respond to the issue of replacing parts that require conductive properties to maximize the application of thermoplastic carbon fiber reinforced plastics (CFRPs), which are advantageous in terms of repair, disposal and recycling. By utilizing the properties of the low-viscosity polymerizable oligomer matrix, it was possible to prepare a thermoplastic CFRP exhibiting excellent impregnation properties while uniformly mixing the conductive filler. Various carbon-based conductive fillers such as carbon black, carbon nanotubes, graphene nanoplatelets, graphite, and pitch-based carbon fibers were filled up to the maximum content, and electrical and thermal conductive properties of the fabricated composites were compared and studied. It was confirmed that the maximum incorporation of filler was the most important factor to control the conductive properties of the composites rather than the type or shape of the conductive carbon filler. Experimental results were observed in which it might be advantageous to apply a one-dimensional conductive carbon filler to improve electrical conductivity, whereas it might be advantageous to apply a two-dimensional conductive carbon filler to improve thermal conductivity. The results of this study can provide potential insight into the optimization of structural design for controlling the conductive properties of thermoplastic CFRPs.

A Study on the Corrosion Prevention of the Integral Series Generator for Military Vehicles (군용차량용 엔진일체형 직렬 발전기 부식 방지에 관한 연구)

  • Kang, Tae-Woo;Kim, Seong-Gon;Shin, Cheol-Ho;Lee, Kye-Sub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.74-79
    • /
    • 2019
  • The military vehicle produces electric power through an engine-integrated serial hybrid generator that is connected to the engine and does not have a separate generator installation space. However, depending on the mechanical characteristics of the connection between the generator and the engine, iron oxide for internal rusting and lubrication grew scattered. The iron oxide is adhered to the starter to deteriorate the starting performance, and there is a problem that the noise of the leg due to wear of the gear is increased. To solve this problem, the connection spline material and the surface treatment of the engine were improved and the shape was changed to a grease sealing type to prevent the generation of iron oxide inside. As the shape of the generator connector composing the shafting system was changed, the integrity of the structure was confirmed through the torsional endurance test. In addition, through the actual vehicle load test, it was verified that no corrosion occurred during the target life span without internal corrosion. It was confirmed that the anti-scattering structure of the grease effectively suppresses the generation of iron oxide, thereby reducing the noise generated from the generator. In this paper, we propose a fundamental solution to the degradation of the starter and the noise generation by preventing the back corrosion caused by the serial hybrid generator installed between the engine and the transmission.

Using Topology Optimization, Light Weight Design of Vehicle Mounted Voltage Converter for Impact Loading (위상 최적화 기법을 이용한 충격하중에 대한 차량 탑재형 전력변환장치의 마운트 경량화 설계)

  • Ko, Dong-Shin;Lee, Hyun-Kyung;Hur, Deog-Jae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.353-358
    • /
    • 2018
  • In this study, it is describe to an optimization analysis process for the weight reduction of the voltage converter in the electric vehicle charging systems. The optimization design is a technique that finds the optimal material distribution under a given material quantity constraint by combining the design sensitivity with the material properties and the mathematical optimization. Among the topology optimization, a lightweight design is performed by a solid isotropic material with penalization with simple formula and well-convergence. The lightweight design consists of three steps. As a first step, a finite element model for the basic design of the on-board voltage converter was constructed and static analysis was performed on the load. In the second step, the optimum shape is obtained for the lightweight by performing the topology optimization using the solid isotropic material with penalization applying the stiffness coefficient of the isotropic material to the static analysis result. As a final step, impact analysis was performed by applying a half-sinusoidal pulse shape impact load which satisfies the impact test standard of the vehicle-mounted part with respect to the optimum shape. In the topology optimization, the design domain was defined as the mounting bracket area, and the design technology was finally achieved by optimizing the mounting bracket to achieve a weight reduction of 20% over the basic design.

Failure Mode and Failure Strength of Homogeneous Metals & Dissimilar Metals Bonded Single Lap-Shear Joints (동종금속 및 이종금속 단일 겹침 접착 시편의 파손모드 및 파손강도에 관한 연구)

  • Park, Beom Chul;Chun, Heoung-Jae;Park, Jong Chan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.1
    • /
    • pp.1-5
    • /
    • 2019
  • In this paper, the experimental study and finite elements analysis were conducted on homogeneous and dissimilar metals single lap-shear bonded joints to investigate the factor that affect the joint failure load. It was found that factors which have the significant effects on the failure load of the joint was stiffness of the adherends. And from experimental results, it can be confirmed that the failure load increases linearly with overlap length increases. And the failure load of dissimilar metal joints is approximately 1KN(10~17%) larger than homogeneous metal joints. In order to confirm this phenomenon, the stress distribution and strain distribution of the specimens were analyzed through the finite element analysis. The difference between homogeneous metals joints and dissimilar metals joints is that stress and strain in adhesive are concentrated at the end of the overlap zone close to aluminium which has lower rigidity than aluminium in case of dissimilar metals joints. From high rigidity of steel, the stress concentration in bonds are decreased and it cause increase of the failure strength at dissimilar metal joints.

Mechanical Properties and Impact Resistance Review of Carbon Fiber Reinforced Cement Composites with Different Fiber Contents and Fiber Lengths (섬유혼입률 및 섬유길이 변화에 따른 탄소섬유 보강시멘트 복합재료의 역학적 특성과 내충격성 검토)

  • Heo, Gwang-Hee;Song, Ki-Chang;Park, Jong-Gun;Han, Yoon-Jung;Lim, Cae-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.86-95
    • /
    • 2019
  • Recently, the applications of carbon fiber have been broader than ever when it comes to such industrials as automobiles, ships, aerospace, civil engineering and architecture because of their lightweight-ness and high mechanical properties. This study analyzed mechanical properties and flexural behavior of carbon fiber reinforced cement composites(CFRC) with different fiber contents and fiber lengths, and also impact resistance by natural drop test on mortar specimens was compared and examined. In addition, contents of carbon fiber(CF) were varied by 0.5%, 1.0%, 2.0% and 3.0%. Fiber lengths was used for 6 mm and 12 mm, respectively. As a result of the test, the flow value was very disadvantageous in terms of fluidity due to the carbon fiber ball phenomenon, and the unit weight was slightly reduced. In particular, the compressive strength was decreased with increasing carbon fiber contents. On the other hand, the flexural strength was the highest with 12 mm fiber length and 2% fiber content. As the results of the impact resistance test, the specimens of plain mortar takes about 2~3 times to final fracture, while the specimens of CFRC is somewhat different depending on the increase of the fiber contents. However, when the fiber length is 12 mm and the fiber content is 2%, the impact resistance was the highest.

Molecular Dynamics Simulation on the Thermal Boundary Resistance of a Thin-film and Experimental Validation (분자동역학을 이용한 박막의 열경계저항 예측 및 실험적 검증)

  • Suk, Myung Eun;Kim, Yun Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.103-108
    • /
    • 2019
  • Non-equilibrium molecular dynamics simulation on the thermal boundary resistance(TBR) of an aluminum(Al)/silicon(Si) interface was performed in the present study. The constant heat flux across the Si/Al interface was simulated by adding the kinetic energy in hot Si region and removing the same amount of the energy from the cold Al region. The TBR estimated from the sharp temperature drop at the interface was independent of heat flux and equal to $5.13{\pm}0.17K{\cdot}m^2/GW$ at 300K. The simulation result was experimentally confirmed by the time-domain thermoreflectance technique. A 90nm thick Al film was deposited on a Si(100) wafer using an e-beam evaporator and the TBR on the film/substrate interface was measured using the time-domain thermoreflectance technique based on a femtosecond laser system. A numerical solution of the transient heat conduction equation was obtained using the finite difference method to estimate the TBR value. Experimental results were compared to the prediction and discussions on the nanoscale thermal transport phenomena were made.

Fundamental study on sound absorption of a dental hand piece using micro-porous EPP substrate processed by UV laser (UV 레이저응용 마이크로 다공성 EPP 기판의 치과용 핸드피스 흡음성능에 관한 기초연구)

  • You, Dong-Bin;Shin, Myung-Ho;Byun, Hyo-Jin;Choi, Do-Jung;Sung, Kuo-Won;Ma, Yong-Won;Shin, Bo-Sung
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.5
    • /
    • pp.158-164
    • /
    • 2019
  • Recently many studies to reduce the noise of dental hand piece which generate inevitably mechanical sound to offend to the ear of a patient have been spotlighted. Generally, methods of adding a sound absorbing material inside the exhaust valve, air pump of machine or automobile are widely reported as optimal way to reduce the mechanical noise. In this paper we studied a new UV laser aided manufacturing of micro-porous structure of EPP substrate and applied dental hand piece to improve the efficiency of sound absorption. A lot of micro-sized pores were fabricated with UV laser processing on the surface of sliced EPP substrate. From fundamental experiments, more high-performance of micro-porous EPP substrate has finally demonstrated for sound-absorbing structure of the micro muffler inside dental hand piece, which actually has the excellent potential to apply a lot of potable machine.

Analysis of effect of hydrogen jet fire on tunnel structure (수소 제트화염이 터널 구조체에 미치는 영향 분석)

  • Park, Jinouk;Yoo, Yongho;Kim, Whiseong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.535-547
    • /
    • 2021
  • A policy to expand the hydrogen economy has been established in Korea and the supply of FCEV is being expanded to realize a hydrogen society. Therefore, the supply of FCEV is expected to increase rapidly, and a solution to respond to accidents of FCEV is required. In this study, an experimental study was conducted to analyze the effect of the hydrogen jet flame generated by a FCEV on the inner wall of the tunnel and the characteristics of the internal radiant heat. For the experiment, the initial pressure of hydrogen tank was set to 700 bar, and the injection nozzle diameter was set to 1.8 mm in order to make the same as the conditions generated in the FCEV. In addition, a tunnel fire resistance test specimen having the same strength as the compressive strength of concrete applied to general tunnels of 40 MPa was manufactured and used in the experiment. The results were analyzed for the separation distance (2 m and 4 m) between the hydrogen release nozzle and the tunnel fire resistance test concrete. As the result, the maximum internal temperature of the test concrete was measured to 1,349.9℃ (2 m separation distance), and the radiant heat around the jet flame was up to 39.16 kW/m2.

A Study on the Real-time Recognition Methodology for IoT-based Traffic Accidents (IoT 기반 교통사고 실시간 인지방법론 연구)

  • Oh, Sung Hoon;Jeon, Young Jun;Kwon, Young Woo;Jeong, Seok Chan
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.15-27
    • /
    • 2022
  • In the past five years, the fatality rate of single-vehicle accidents has been 4.7 times higher than that of all accidents, so it is necessary to establish a system that can detect and respond to single-vehicle accidents immediately. The IoT(Internet of Thing)-based real-time traffic accident recognition system proposed in this study is as following. By attaching an IoT sensor which detects the impact and vehicle ingress to the guardrail, when an impact occurs to the guardrail, the image of the accident site is analyzed through artificial intelligence technology and transmitted to a rescue organization to perform quick rescue operations to damage minimization. An IoT sensor module that recognizes vehicles entering the monitoring area and detects the impact of a guardrail and an AI-based object detection module based on vehicle image data learning were implemented. In addition, a monitoring and operation module that imanages sensor information and image data in integrate was also implemented. For the validation of the system, it was confirmed that the target values were all met by measuring the shock detection transmission speed, the object detection accuracy of vehicles and people, and the sensor failure detection accuracy. In the future, we plan to apply it to actual roads to verify the validity using real data and to commercialize it. This system will contribute to improving road safety.

A Comparative Study on Skid Resistance Performance Evaluation Methods for Maintenance of Skid Resistance Pavement (미끄럼방지포장 유지관리를 위한 미끄럼저항 성능평가방법 비교 연구)

  • Hyun-Woo Cho;Sang-Kyun Noh;Bong-Chun Lee;Yoon-Seok Chung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.79-85
    • /
    • 2023
  • Skid resistance pavement is an accessory to the road and is a facility for the safe driving of cars by increasing the skid resistance of road pavement. In particular, in bad weather conditions such as snow, rain, and black ice, the skid resistance performance of skid resistance pavement greatly affects the safety of road traffic and drivers. However, BPT(British Pendulum Tester) has a test area of only 0.009 m2, making it difficult to represent the overall packaging surface. A reliable method of evaluating slip resistance performance is needed for maintaining non-slip packaging. In this study, the conventional BPT test and the skid resistance performance evaluation method of the PFT(Pavement Friction Tester) and µGT(Micro Grip Tester) tests were compared through guidelines and standard investigations and applied to the field skid resistance performance evaluation. In addition, skid resistance pavement with different skid resistance performance was installed at the test-bed and actual road demonstration sites to compare BPN(British Pendulum Number), SN(Skid Number), GN(Grip Number), and to derive correlations for each performance evaluation method. As a result of the experiment, SN and GN showed similar skid resistance performance, and the GN value was derived similar to BPN × 0.01.